TLV®

Steam Specialist Company Quality & Innovation Products & Solutions

株式会社 ティエルブイ

Peush Jaitly

General Manager – Country Head (India) pjaitly@tlv.co.in 9841020933

Company Introduction

• Initiatives, Outcomes & Lessons Learnt (JITMAP activities)

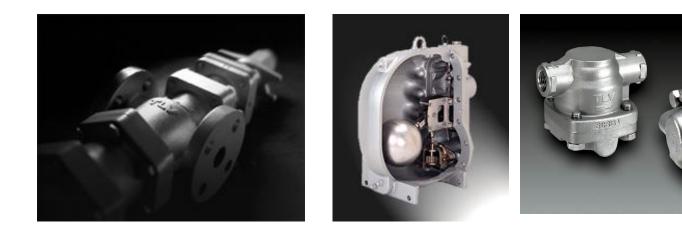
TLV A Journey of 70+ years

Founded: 1950, Kakogawa, Japan

TLV **Trouble Less Valve** ISO 9001 : acquired – 1991 ISO14001: acquired – 1997 ASME N : acquired – 2010

100% Customer Satisfaction

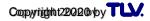
Quality First & Incomparable Originality – 1400+ Patents



Incomparable Originality

Patented Products & Systems

PRV with Cyclone Separator & Steam Trap Built In


Power Trap for Stall Conditions Free Float Steam Trap

TM5 Steam Trap Diagnostic Tool

Patents held by TLV

1,387

(as of March, 2018)

MISSION is to Help

Build a Low Carbon Society and Create "Peace of Mind" in plants through

A Sustainable Asset Management Program

which Improves Safety, Reliability & Profitability by Continuously Optimizing Performance of the Entire Steam System through Visualization based on "Condition Monitoring and Timely Consulting & Engineering Services" to Minimize Condensate Problems, Energy Losses and CO₂ Emissions

Copyright 2020 by **TLV**.

Recognition - Energy Conservation Grand Prize 2021

Presented by the Energy Conservation Center, Japan

iBPSSM.net.

Innovation of steam-using equipment management through wireless monitoring

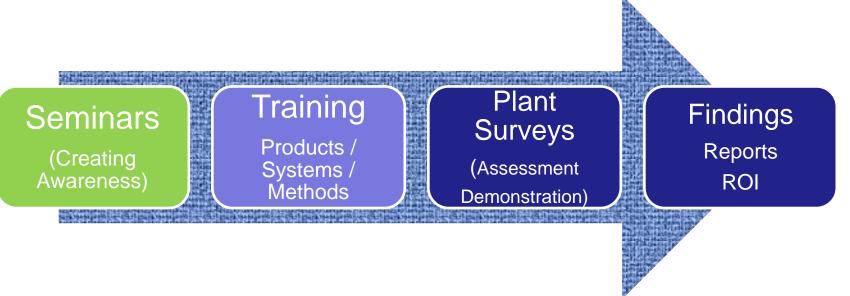
TLV: 3 times winner of this award

2009

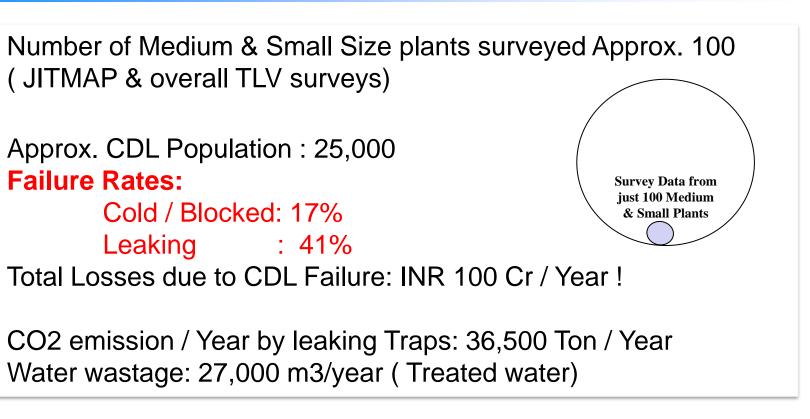
Reduction in Steam Losses from 100,000 Steam Traps

TLV

pracred by Ministry of Economy. Trade and Industry 2009 'Grand Prose for Excellence in Energy Efficiency and Contensiono'' (Association Category) Quoted award-winning case report issued by the Energy Conservation Center dynt 222020 by TLV.



Objective, Framework & Activities


Objective:

To provide a platform for replication of successful Japanese Low Carbon Technology / Systems & Methods to improve Steam Systems.

- Improving Process Efficiency,
- Avoid unwanted shutdowns,
- Energy Conservation
- Reduce CO2 emissions
- Conserve Water

Findings & scope for improvements

Helping towards Net Zero Goal & Conserving Water

Copyright22020 by TLV.

Case Study – Large Oil Refinery in India

Survey of a section of the plant

CES Survey (Steam System Balance & BPSSM)	Opportunities	: 19 items
	Energy Savings	: 14 items
	Safety / Reliability	: 5 items
	Steam Savings	: 181 t/d (7.6 t/h)
	Monetary Savings	: 172 million INR/
	"Quick Hit" (7 items)	: 55 t/d (2.3 t/h)
		: 53 million INR/y
BPSTM (CDL Survey)	Steam Savings	: 9.8 t/d
	Failure Rate	: 54.8%
	Monetary Savings	: 11 million INR/y
SonicMan Survey (Gas Leak Survey)	Monetary Savings	: 6.3 million INR/
	Total Savings	: 189 million I
		*Merit calculations t Steam : HP 352 MP 320 LP 288

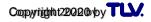
SSOP_® Value (Simulated for Entire Plant)

Potential : 1.54 billion INR/y

CO₂ equiv. 97,000 t-CO₂/y & Safety/Reliability Improvements

SSOP®	Initial SSOP Assessment	Potential	
CES® Survey	Surveyed Steam consumption : ~2200 t/d Steam applications : 31 Steam savings : 181 t/d	599 mil. INR/y Safety/Reliability Steam savings : 653 t/d (6.4% of total plant steam)	
Comprehensive Steam System Analysis	Opportunities : 19 Savings : 172 mil. INR/y Safety/Reliability	("Quick Hit": 242 mil. INR/y)	
BPSTM® Survey	Surveyed Locations : 91 CDLs Failure Rate : 54.8% Steam savings : 9.8 t/d	931 mil. INR/y Steam savings : 841 t/d Eliminate condensate problems and steam loss	
Condensate Discharge Location Management	Savings : 11 mil. INR/y Eliminate condensate problems		
SonicMan _® Survey	Surveyed : ~1.2% of plant area Leaks : NG 1.1 Nm ³ /h Air 18.6 Nm ³ /h Steam 1.7 kg/h	18 mil. INR/y Safety Improvements	
Air/Gas Leak Survey	6.3 mil. INR/y Safety Improvements		

Findings

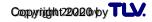


Is there scope for improvement ? Tremendous !

Can we do something in a time bound manner? Yes indeed

Will it be beneficial for both (Users in India & Japanese company)? Yes

Challenge is to find "How"



Implementation? High cost of poor quality ! Lack of Appreciation / Understanding of superior technology

100 years old Archaic IBR Rules & Regulations make manufacturing unnecessary expensive & resulting in higher cost to the users! (Unnecessary Energy Consumption / Steel Industry / Highest CO2 emission / This Regulation creates more CO2 emission / Hundreds of casting/forging manufacturer, vessel manufacturers !)

Procurement Processes don't give any advantage to the products of superior technology and quality !

Suggestions on way forward

1. Effective implementation is the key to success.

To explore some mechanism whereby IGES+TERI stay engaged for longer time to oversee the implementation and review.

2. Internationally accepted standards (such as ASME etc) should be accepted in India as well.

3. Government of India & Japan should facilitate and support the effective implementation to demonstrate and prove the benefits of Low Carbon Technology (To make real progress towards Net Zero Goal)

4. Procurement policies should also consider superior technologies & quality not just price in decision making.

TLV®

Thank You

〒 株式会社 テイエルブイ

-

ñ

11

Copyright 2020 by