

Interactions between urban and rural air pollution in Asia, and the multiple development benefits of coordinated action

MOEJ-IIASA collaborative research activity

Zbigniew Klimont (IIASA), Gregor Kiesewetter (IIASA), Wolfgang Schoepp (IIASA), Chris Heyes (IIASA), Eric Zusman (IGES), Peter Rafaj (IIASA), Pallav Purohit (IIASA), Adriana Sanabria-Gomez (IIASA), Kaoru Akahoshi (IGES), Shaohui Zhang (IIASA/Beihang University), Younha Kim (IIASA)

EANET/IIASA International Workshop Strengthening the Science-Policy Interface for Clean Air and a Sustainable Future in Asia

19 December 2022

Regional analysis of air pollution (2018)

MULTINATIONAL SCIENTIFIC COLLABORATION: Authors include from China (Beijing Normal University, Chinese Academy of Sciences, Tsinghua University), Japan (NIES, IGES), Korea (Konkuk University, Korea Environment Institute), and IIASA

Mean population exposure to PM2.5				Climate forcers			SDG
70	70						
				CO_2	CH_4	BC	benefits
60							
50 —			<i>Current legislation</i> relative to 2015* ⁹	+16%	+17%	-24%	3
€ 40	Contrast -		Conventional controls				32. 16.
² (п	HO Interim Target 1		relative to 2030 baseline	0%	0%	-8%	3 cm
Z 30			'Next-stage' measures	0%	-29%	-56%	3 == 2 == 15 == -W-
20			relative to 2030 baseline	070	-2570	-5070	
			Development priority				3 = 2 = 13 = 15 = 15 = 15 = 15 = 15 = 15 = 15
10 -	HO Guideline		measures relative to 2030 baseline	-19%	-44%	-72%	👰 🙀 🙀 👘
0			relative to 2050 baseline				× E 1
0	2015	2030					

Interactions between urban and rural air pollution in Asia (MOEJ-IIASA Project A)

OBJECTIVES

- ✓ Reveal interdependencies between urban and rural air pollution in East Asia,
- ✓ Highlight the air quality and health benefits from regionally and internationally coordinated response action,
- ✓ Explore co-benefits for the various SDGs.,

Collaboration with scientific institutions/programs in Japan: JTCAP, EANET - comparison with newly available measurements, ACAP - emission inventories, NIES - comparisons of modeled source apportionments, IGES - the assessment of socio-economic aspects of emission control measures in cities and rural areas.

GAINS: A tool for a systematic assessment of the costeffectiveness of emission control strategies

- GAINS quantifies sectoral emission control potentials and costs
 - for exogenous (governmental, international agencies) activity projections,
 - considering physical and economic interactions between pollutants.
- The model includes, i.a.:
 - Several projections of emission drivers and representation of environmental policies
 - Characteristic of known emission sources (GHG and air pollutants)
 - Characteristic of available mitigation technologies (reduction efficiencies, costs, lifetime, co-control, application limits)
 - Health and ecosystem impact assessment

• GAINS model capacity further developed, extending application across scales, i.a.:

- For secondary PM precursors (SO₂, NOx, NH₃, VOC): Spatial resolution 0.5° x 0.5°
- For primary PM2.5: Grid to grid tracking: Spatial resolution 0.1° x 0.1°; Monthly results; For 4 different source sectors / vertical layers (can be mixed as needed)
- Link to large scale Integrated Assessment Models (IAMs)

• What is yet inadequately represented in the modelling?

- Implementation barriers
- Non-technical measures
- Cost of inaction

· · · ·

Selected examples of source contributions to PM_{2.5}

Cooking/heating - rural

Cooking/heeating – urban

International shipping

Source: GAINS model (IIASA)

PM_{2.5} Source apportionment for Zhangjiakou, China

PM_{2.5} Source apportionment for Daejeon, Korea

Regional and national analysis: 'Clean Air Solutions for ASEAN' (expected publication mid 2023)

*) Includes also energy-efficiency measures; **) Further potential represents approximation for reduction due to more stringent standards or rapid electrification, although the result will be different depending on target year

Multiple benefits of selected example measures across several policy domains

Impact on pop-weighted exposure to $PM_{2.5}$ in 2030 from implementation of priority solutions and contribution from local and transboundary sources (example for two countries)

Source: GAINS model (IIASA); Clean Air Solutions for ASEAN (2023)

I A S A

Co-benefits of measures for GHG emission reductions: Example for Cambodia

- Several measures also reduce GHG emissions
- Some have GHG emission 'penalties' in the short run
- In the longer run (2050), co-benefits are larger, and no 'penalties' were identified

Summary and further steps

- Tools developed to:
 - Assess the interactions between urban/rural air pollution, and
 - Design and evaluate packages of measures to harvest multiple benefits of coordinated action
- These can support policies to develop coordinated local and regional action (near- and long-term planning)
- Multiple studies support implementation of particular policies/measures but the actual implementation is often slow
- New methods are being developed to better assess, i.e.:
 - Barriers for implementation and ways to overcome them,
 - Costs of inaction
- These can be used to enhance the integrated modelling analysis, considering local circumstances and indicating costs and benefits of overcoming barriers and delivering multiple benefits
 => more robust and realistic models => more efficient science-policy dialog