Quantifying GHG emissions from Urban Water Sector- Case Study: SPAM Jatiluhur II

Webinar on Quantifying Emissions (GHGs and SLCPs) from the Urban Infrastructures

Junko Akagi IGES Kitakyushu Urban Centre

December 7th 2022

Contents

- 1. General information on the monitoring, reporting and verification (MRV)
 - MRV at a glance
 - Quantifying GHG reductions relative to a base line scenario
 - Steps for GHG accounting & reporting
 - GHG accounting principles
- 2. GHG emissions from urban water treatment system
- 3. Preliminary results for the Jatiluhur II

2

MRV at a glance

			Type I: MRV of GHG emissions at organisation level	Type II: MRV of GHG reductions at project level for crediting	Type III: MRV of GHG emissions at national level	Type IV: MRV of GHG reductions by policy/action	
	Object		GHG emissions at organisation level under GHG scheme	GHG reductions realised by individual project	GHG emissions at national/ sub-national level	GHG reductions by policy/ action at national/sub- national level	
	Aim		Determination of GHG emissions at covered organisation under GHG scheme	Crediting and certification of amount of GHG reduc- tions by individual project under GHG scheme	Determination of GHG emissions at national level and compliance assessment for devel- oped countries under Kyoto Protocol	Quantitative evaluation of policy/action	
		M Ŕ	Monitoring and Reporting Guidelines under GHG scheme	Monitoring/ Baseline/Calculation methodologies under GHG scheme	IPCC Guidelines and UNFCCC COP/CMP Decisions	Unavailable	
	Methodology	v	Verification Guideline under GHG scheme	Verification Guideline under GHG scheme	UNFCCC COP/CMP Decisions and Kyoto Protocol Art.8 with related documents for review	Unavailable	
	Implementa-	M Ŕ	Covered organisation under GHG scheme	Project participant of individual project	National government/ sub-national government	Unknown (probably, government that is imple- menting the policy/action)	
	tion body	v	Third-party verification body	Third-party verification body	Expert Review Team under UNFCCCC/ Kyoto Protocol Art.8	Unknown	

Source: Ninomiya Y. (2012) Classification of MRV of Greenhouse Gas (GHG) Emissions/Reductions: For the discussions on NAMAs and MRV. IGES Policy Brief. <u>https://www.iges.or.jp/en</u> /publication_documents/p ub/policy/en/3145/PB_25 _E_final.pdf

3

or.jp

MRV at a glance (Cont.)

	Type I: MRV of GHG emissions at organisation level	Type II: MRV of GHG reductions at project level for crediting	Type III: MRV of GHG emissions at national level	Type IV: MRV of GHG reductions by policy/action	
Characteristics	 Very high required level of accuracy Technically well matured and sophisticated MRV Sufficient knowledge and experiences accu- mulated in developed countries Relatively simple 	 Very high required level of accuracy Technically well matured and sophisticated MRV Globally operated via CDM all over the world Technical difficulties inherited in baseline setting, additionality demonstration 	 Medium required level of accuracy (not as much as Type I and II) Technically matured and widely operated in developed countries Not well established in developing counties Relatively simple 	 Undeveloped MRV Required level of accuracy unknown, but possibly less than medium Important MRV regarding effectiveness of international climate regime 	
Examples operated	•EU-ETS •Climate Registry •California Climate Action Registry (US), •Tokyo Metropolitan Government ETS •JVETS (Japan)	•CDM •VCS •J-VER (Japan) •BOCM (Japan: under developing)	Submission and review of National GHG Inventory	Unavailable	
International standards/ Guidelines	•ISO14064-1 •ISO14064-3 •ISO14065 •ISO14066	•ISO14064-2 •ISO14064-3 •ISO14065 •ISO14066	 IPCC Guidelines (M/R) UNFCCC COP/CMP Decisions (R/V) 	Unavailable	

Source: Ninomiya Y. (2012) Classification of MRV of Greenhouse Gas (GHG) Emissions/Reductions: For the discussions on NAMAs and MRV. IGES Policy Brief. https://www.iges.or.jp/en /publication_documents/p ub/policy/en/3145/PB_25 E final.pdf

Source: The GHG Protocol for Project Accounting https://ghgprotocol.org/si tes/default/files/standards /ghg_project_accounting. pdf GHG reductions must be quantified relative to a reference level of GHG emissions. Under national and corporate-level GHG accounting, reductions are typically quantified against actual GHG emissions in a historical base year (see Figure 2.1a). For project-based GHG accounting, however, GHG reductions are quantified against a forward-looking, counter-factual baseline scenario (see Figure 2.1b). The most important challenge for GHG project accounting is identifying and characterizing the baseline scenario.

5

Steps for accounting and reporting GHG reductions from a GHG project

Source: The GHG Protocol for Project Accounting https://ghgprotocol.org/si tes/default/files/standards /ghg_project_accounting. pdf

GHG accounting principles

Principles	Details
Relevance	Use data, methods, criteria, and assumptions that are appropriate for the intended use of reported information
Completeness	Consider all relevant information that may affect the accounting and quantification of GHG reductions, and complete all requirements
Consistency	Use data, methods, criteria, and assumptions that allow meaningful and valid comparisons
Transparency	Provide clear and sufficient information for reviewers to assess the credibility and reliability of GHG reduction claims
Accuracy	Reduce uncertainties as much as is practical
Conservativeness	Use conservative assumptions, values, and procedures when uncertainty is high

Source: The GHG Protocol for Project Accounting https://ghgprotocol.org/si tes/default/files/standards /ghg_project_accounting. pdf

GHG emission sources

Imai M et al (2020) Greenhouse Gas Emissions at Purification Plant and sewage treatment plants. Online Technical Papers of Annual Meeting The Society of Heating, Air-Conditioning and Sanitary Engineers of Japan 2020. A-26. https://www.jstage.jst.go.jp/article/shasetaikai/2020.1/0/2020.1_101/_article/-char/en

Electricity consumption of TMG Bureau of Waterworks

図 3-3 東京都水道局における工程別電力消費量割合 出典:東京都水道局「環境報告書 2011」

> Breakdown of electricity consumption by process at TMG Bureau of Waterworks

GHG emissions from water treatment facility

GHG emission from the system boundary

GHG emission from each equipment

Equipment (Ex. Pumps, Generator, other)

Process

1. Basic information

- Total amount of water intake: 7,000 L/sec
- Electricity source: grid / diesel generator / renewable
- Sludge treatment: incineration / landfilling / composting

Preliminary results

Jatiluhur II water treatment plant

		Product specs (kW)	Number of items	Working hours (Hours/day)	Working days (Days/year)	Working hours (Hours/year)	Electricity consumption (kWh/yr)	Electricity consumption (MWh/yr)	Emission factor (tCO2/MWh)	CO2 emission (tCO2/yr)
Electricity use							167,845,980	167,846	0.87	146,026
	Pompa Intake & Air Baku/吸水・排水ポンプ	1,200	Э	24	365	8,760	31,536,000			
	Aerator & process/エアレーター&プロセス	630	-	24	365	8,760	5,518,800			
	Filter System/フィルターシステム	1330	-	24	365	8,760	11,650,800			
Pumping system	Pompa Air Olahan/加工水ポンプ	4,062.50	3	24	365	8,760	106,762,500			
	Chemical System/化学システム	313	-	24	365	8,760	2,741,880			
	Chlorin System/塩素系システム	263	-	24	365	8,760	2,303,880			
	Sludge facilities/汚泥設備	487	-	24	365	8,760	4,266,120			
Ruang Operator/bangunan	Lighting/照明	350	-	24	365	8,760	3,066,000			
pendukung	AC/交流		-	12	365	4,380	0			

		Product specs (L/h)	Number of items	Working hours (Hours/day)	Working days (Days/year)	Working hours (Hours/year)	Electricity consumption (L/yr)	Electricity consumption (MWh/yr)	Emission factor (tCO2/MWh)	CO2 emission (tCO2/yr)
Fuel use (Stationary)							102,200	102	2.619	268
Diesel	Generator /発電機	840	2	0.2	365	61	102,200			
	Switchgear and transformator/開閉装置と変圧	器	2	24	365	8,760	0			
	Travo Oil/トラボオイル(?)		1	. 24	365	8,760	0			

Note: Other types of fuels (e.g., Gasoline, LPG, CNG) are not used.

		Product specs (L/km)	Number of items	-	-	Traveling distance (km/year)	Fuel comsumption (L/yr)	Fuel comsumption (kL/yr)	Emission factor (tCO2/kL)	CO2 emission (tCO2/yr)
Fuel use (Mobile)							2,029,080	2,029	2.322	4,712
	Directur and Manager Car – SUV/MPV	0.077	22	-	-	34,320	58,080			
Gasoline	Operational Car - MPV	0.100	30	-	-	36,500	109,500			
	Operational Motorcycle – Matic	0.017	510	-	-	215,350	1,861,500			

Note: Other types of fuels (e.g., Diesel, LPG, CNG) are not used.

Preliminary results (Cont.)

CO2 emission for 1 L water treatment \downarrow

Total amount of water intake (L/sec)	Working seconds (sec/year)	Total amount of water intake (L/year)	CO2 emissionn per L (kgCO2/L)
7,000	31,536,000	220,752,000,000	0.0007

(年間2200億リットル)

One litter water treatment produces 0.7g CO2. 水1Lの処理で0.7グラムのCO2を排出する。

(Reference) Tokyo's case: 245g CO2 (Fiscal year 2020) (参考)東京都は245グラム(2020年度)