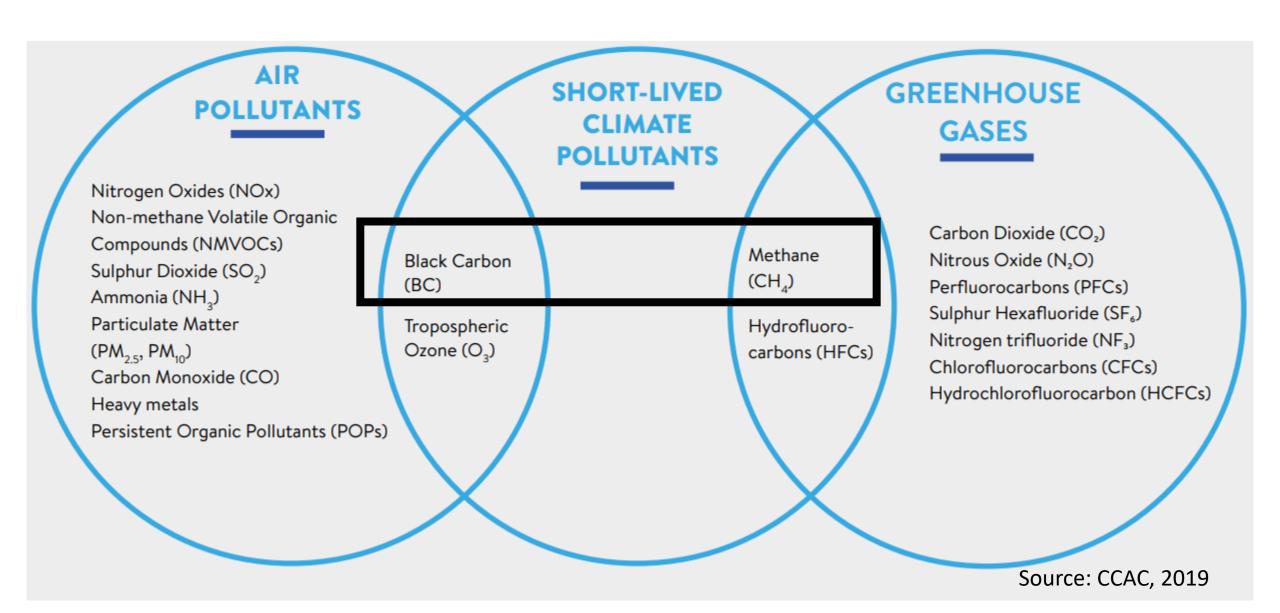
Assessing GHG and SLCP emissions from urban city services in Indonesia: a co-benefits analysis and case study on wastewater

Eric Zusman
Research Director
Institute for Global Environmental Strategies (IGES), Japan

Highly Potent Short-Lived Climate Pollutants—Sources and Impacts


POLLUTANT SOURCES MAJOR IMPACTS local BLACK CARBON regional black coal diesel exhaust biomass for cookstoves METHANE global landfills natural gas livestock CO NO VOCs TROPOSPHERIC local OZONE regional methane carbon nitrogen volatile organic oxide compounds monoxide HYDROFLUOROglobal CARBONS refrigeration air conditioning

Source: The Climate and Clean Air Coalition.

Notes: Black carbon and tropospheric ozone also have a small global impact; methane also has small local and regional impacts.

Air Pollution and Climate Change Linkages

The health impacts of pollution globally are about the same as smoking

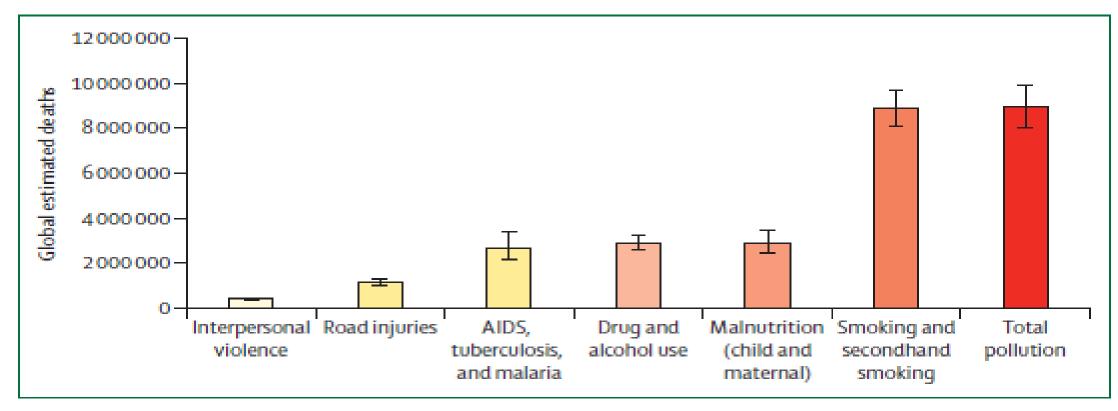
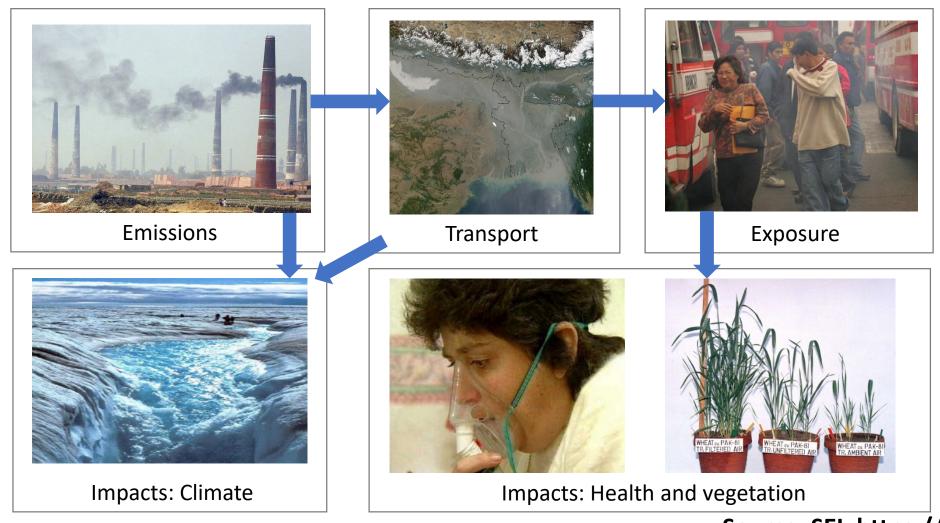


Figure 1: Global estimated deaths by major risk factor or cause

Data from Institute for Health Metrics and Evaluation and Global Burden of Diseases, Injuries, and Risk Factors Study 2019.6 Error bars are 95% CI.

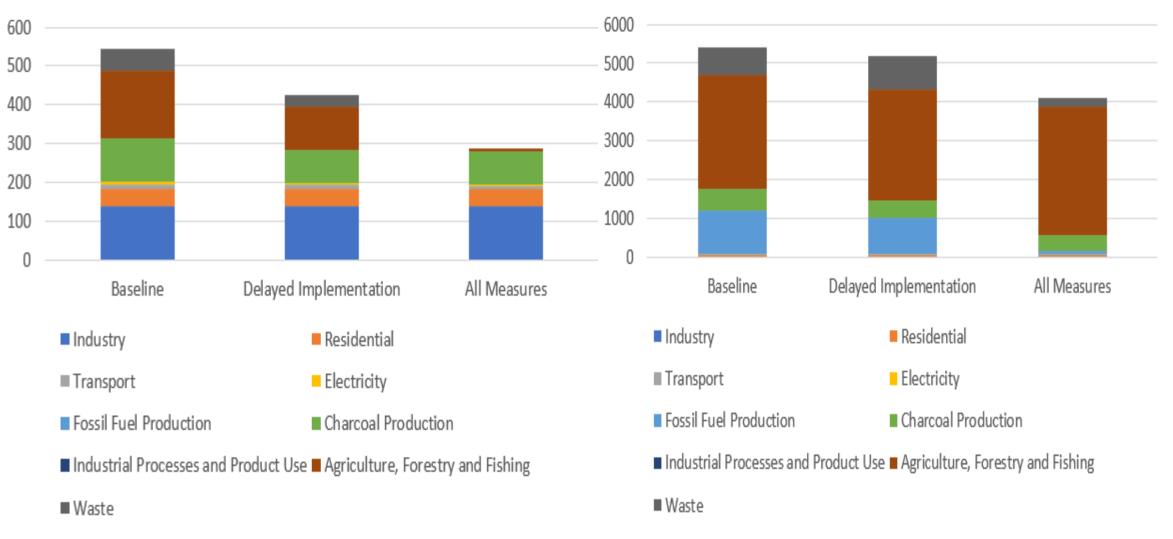
SLCP Impacts


There are several tools that can help understand these impacts

- Cross-sectoral
 - SEI-LEAP-IBC
 - IIASA-GAINs
 - NIES-AIM

- Sector Specific
 - Kyushu Univ (with training with IGES)-Wastewater, Solar Energy, Heat Only Boiler
 - IGES (EQT)-Waste Management
 - Clean Air Asia-Transport

Cross-Sectoral— LEAP IBC and GAINs


LEAP-IBC: Tool for integrated air pollution and climate change mitigation assessment

Source: SEI, https://leap.sei.org/

LEAP in Thailand

Source: SEI and IGES, 2022 Please do not cite without permission

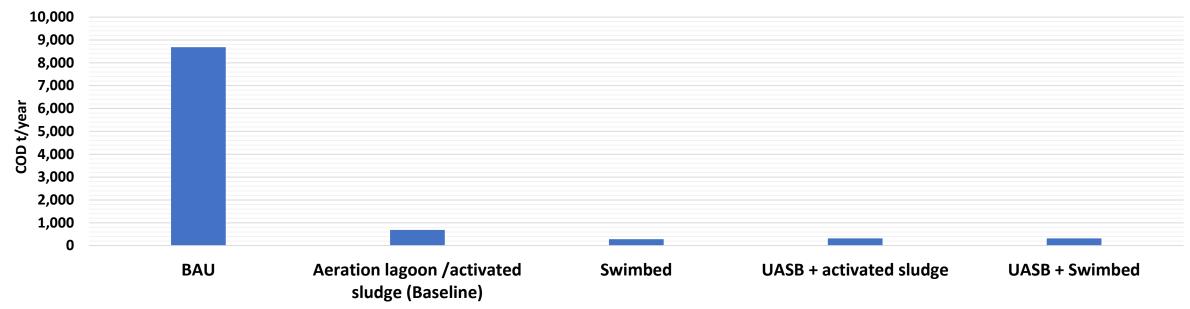
PM_{2.5} emission in 2030 for the baseline, delayed implementation and all measures scenarios

CH₄ emission in 2030 for the baseline, delayed implementation and all measures scenarios

Outputs from GAINs for all of Asia

Source: UNEP and APCAP, 2019

Sectoral— Wastewater and Solar Energy


Wastewater Management Tool

Can be used to look at industrial wastewater management in Indonesia

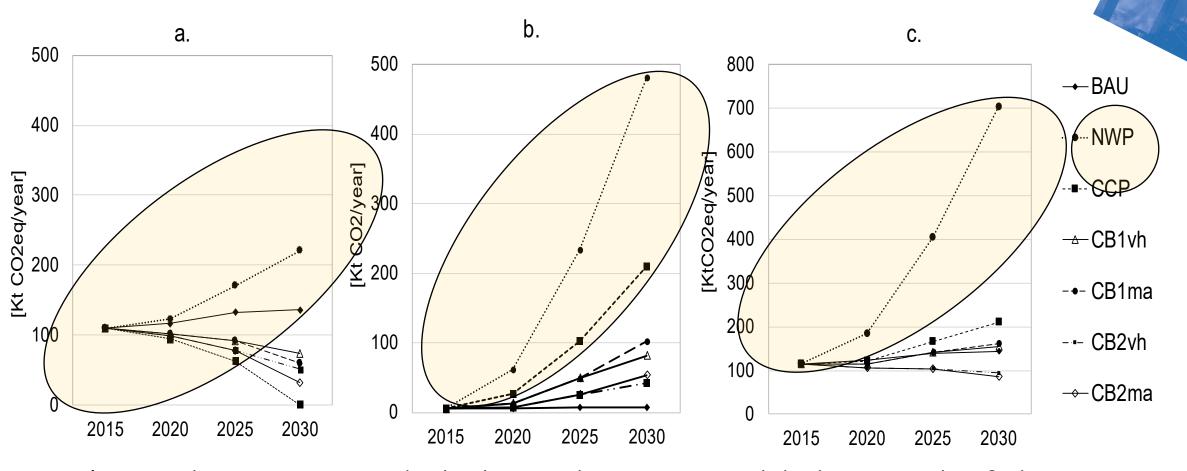
Source: Kyushu University, 2021

Reduction in COD

Scenarios	BAU	Aeration lagoon /activated sludge (Baseline)	Swimbed	UASB + activated sludge	UASB + Swimbed
COD t/year	8,685	686	285	317	317
Percentage reduction in COD		92.1	96.7	96.4	96.4

Treatment Technology Source: Kyushu University, 2021

Amount of GHGs (t-CO2e/year)


Scenarios	BAU	Aeration lagoon /activated sludge (Baseline)	Swimbed	UASB + activated sludge	UASB + Swimbed
Scenarios	DAO	(Daseillie)	Swiiibed	Siduge	OASD + SWIIIIDEU
GHGs	50,715	62,059	18,294	14,047	7,686
Percentage reduction in GHGs	1	-22.4	63.9	72.3	84.8

Wastewater Treatment Technologies

Source: Kyushu University, 2021

Indonesia: Multi-level Governance Required to Achieve Climate Benefits in Fish Processing

Gómez-Sanabria A, Zusman E, Höglund-Isaksson L, Klimont Z, Lee S-Y, Akahoshi K, Farzaneh H, & Chairunnisa (2019). Sustainable wastewater management in Indonesia's fish processing industry: bringing governance into scenario analysis. *Journal of Environmental Management*.

floor Monay

Intuitive Dashboard

Health & Economic Co-Benefit

Calculation Method

Database

Input Data Local Geographical Data Local Geographical Data Local Geographical Data

1.1

Local Meteorological Data

Solar Radiation
Ambient Temperature (OC)

Photovoltaic Cell Specifications

Single crystal

Asiaalk Asyle

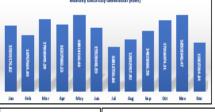
Lalilade

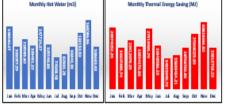
Banical operation well temperature [*C]	44.11
Banical operation ambient temperature [*C]	21.11
Insideal extistion under anniust annition [W/a2]	1.11
locideal estistica andre test anntition [W/m2]	1.11
Surfaur Arra [m2]	1.67
Raint power [W]	1.33
Hanimon efficiency [X]	1.214
Slandard Temperature [IC]	25.00
Traperature sarffiniral [I/deg]	-8.26
Solar Iranneillann	1.31
Devaling faulus	1.31
Sanfane Slave (Peaces)	35.88

Solar Water Heater Specifications

Flat Plates (Direct active)

Surface Arra [m2] 2.21
Subar Examina 0.60




Utilization

O TIME TO THE	
Photocollain	
Installed Capacity [IW]	100,000
Water Beater	
Anantily	28,888
Water Intel Temperature [IC]	15
Water Collet Temperature [IC]	EI .

Results __Global Horis with Irreduction __PY Output 1.00

falal Eleatricity Georgalica [WW4]	183,234,633.38		
Espesied Bedaution in GBG eniosism and air pullulism			
CRC II/4	179,588.85		
PHZ.S [kg/g]	92,626.46		
C# [kg/g]	25,661.26		
502 [kg/g]	2,133,536.33		
84- [64/4]	733,464.83		
Sular Heat			
folal Thremal Enroqu [HJ/q]	261,417,121.17		
felal Bel Waler [e3/g]	1,371,242.41		
Espected Reduction in GBG estimators and six pullation			
CBC [174]	\$8,295.77		
PHZ.5 [Lq/q]	531,468.37		
C# [kg/g]	1.11		
502 Lq/q	514,592.49		
80- [Lg/g]	77,262.92		
Tatal Raduction in in GHG amirrions as	d air pullution		
CRC IV4	225,745.82		
PHZ.5 [kg/g]	624,007.49		
C# [kg/g]	25,661.26		
502 kg/g	2,714,128.52		
84- [64/4]	175,427.11		

Solar Energy Tool

Can be used to look at co-benefits of solar energy installations

Source: Kyushu University, 2021

Regional Action Plan for West Java Greenhouse Gas Emission Reduction 2010 - 2030

Forestry

- Rehabilitation of critical land and mangroves
- Forest protection and security

Agriculture

- Aplication of the fertilization system
- Cultivation Technology

Energy

- Renewable energy development
- Fossil Fuel Substitution
- Energy efficiency

Transportation

- ITS/ATCS development
- Bus Rapid Transit (BRT) Development
- Rejuvenation of general transportation
- Car Free Day
- · Smart Driving Training
- · Parking Management

Waste and Domestic Waste

- Rehabilitation of open dumping landfill
- Development and operation of regional TPPAS
- Construction and operation of TPS3R
- Construction and operation of Waste Bank
- Sludge Treatment Plant Construction
- Construction and Operation of Sanimas (MCK++ or WWTP)

13,5 Million tonnes CO2eq Emission Reduction

9,94% of BAU
Baseline Projection in
2030

Source: West Java RAD-GRK (Governor Regulation No. 56/2012) which was reviewed in 2016 and 2018

There is significant potential for solar PV in Bandung

2122.102 Kwh/m² **Annual Potential Solar** PV Total 2018 in **Bandung City** 233.067 Kwh/

Figure 6. Hourly solar PV with hillshade analysis.

Figure 7. The annual potential of solar PV energy in Bandung.

Source: Anjar Dimara Sakti, 2022

Solar Energy Rooftop

Source: West Java Energy and Mineral Resources Agency (2020)

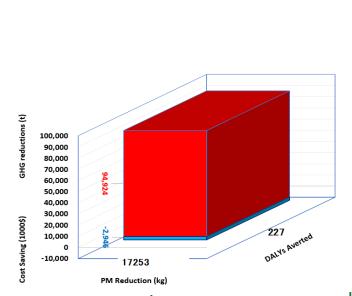
Solar Panel Rooftop is developed as a new renewable energy which is planned to be installed in government buildings, schools, sports buildings and health facilities.

 Bandung has 849,421 state electricity company (PLN) customers

Energy consumption in 2018:
1,585,382 MWh

 High-end residential developments are required to cover at least 25% of their rooftop with solar PV

Source: Anjar Dimara Sakti, 2022

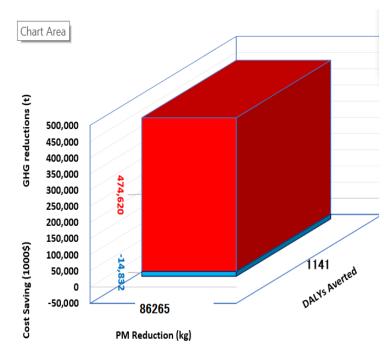

Source: Prima Mayaningtias

Source: Tool developed by Kyushu University and analysis by IGES, 2022

Please do not cite without permission

Estimated co-benefits of installation of solar pv in residences in Bandung

(2022-2032)



Avoided Emissions	Solar	
Avoided Emissions	Solar	
GHG (t/y)	9,492.4	
PM2.5 (kg/y)	1,725.3	
CO (kg/y)	1,357.0	
SO2 (kg/y)	116,311.7	
NOx (kg/y)	42,259.9	

2022

Total Energy: 60,000 kW/year

Units: 85,000

Avoided Emissions	Solar
GHG (t/y)	474,620.4
PM2.5 (kg/y)	86,264.5
CO (kg/y)	67,848.5
SO2 (kg/y)	5,815,587.4
NOx (kg/y)	2,112,996.7

2026

Total Energy: 300,000 kW/year

Units: 425,000

GHG reductions (t)				
ţį	1,000,000			
gré	900,000			
ě	800,000			
H.G	700,000	o l		
U	600,000	949,		
	500,000	,241		
	400,000			
	300,000			
\$00	200,000	-29		2200
(10	100,000	9,9		2302 sted
ng	0	8	/	, ys Aver
Cost Saving (1000\$)	-100,000	172529		2302 DALYS Averted
Cos		PM Reduction (kg)		

Avoided Emissions	Solar		
GHG (t/y)	949,240.7		
PM2.5 (kg/y)	172,529.1		
CO (kg/y)	135,697.0		
SO2 (kg/y)	11,631,174.7		
NOx (kg/y)	4,225,993.5		

2032

Total Energy: 600,000 KW/year

Units: 850,000