

Experience Using Co-benefits Tools for Projects in Asia

Hooman Farzaneh Interdisciplinary Graduate School of Engineering Sciences Kyushu University

Tools and Methods for Implementing Projects and Policies with Climate and Sustainable Development Co-benefits

Jan 2022

Introduction

Quantitative Evaluation on Co-benefit Projects (2018~)

Objective

Need for the Co-benefits assessment tool

A tool to be used as a first order screening for understanding the relative magnitude of emissions reduction of local and global scale pollutants

Characteristics

Bottom-up technology assessment spreadsheet tool to evaluate cobenefits of technical projects

Organization

Solar Energy Co-benefits Tool

Monthly Thermal Energy Saving (MJ) 20,000 solar collectors

Solar power scenario	
Total Electricity Generation (GWh/y)	183.3
Expected Reduction in GHG emissions	and air pollution
GHG (1000 t/y)	179.5
PM _{2.5} (t/y)	32.6
CO (t/y)	25.7
SO_2 (t/y)	2199.5
NOx (t/y)	799.2
Solar heat scenario	
Total Thermal Energy (TJ/y)	260.5
Expected Reduction in GHG emissions	and air pollution
GHG (1000 t/y)	50.2
$PM_{2.5}(t/y)$	591.5
CO (t/y)	0.0
SO_2 (t/y)	514.6
NOx (t/y)	77.3
Total Reduction in GHG emissions and	air pollution
GHG (1000 t/y)	229.7
PM _{2.5} (t/y)	624.1
CO (t/y)	25.7
SO_2 (t/y)	2714.1
NOx (t/y)	876.4

1000	
(2)	
$\overline{\mathbf{v}}$	

Exposure Level

Deaths and DALYs

Deaths and DALYs (Baseline)

(per 100000
23
150.9
109.7
18.14
276.82
15.7

DALYs	
Chronic Obstructive pulmonary Disease (COD)	1614
Ischemic Heart Disease(IHD)	11922
Cerebrovascular disease (Stroke)	9686
Lung Cancer (LC)	1490
Acute Lower Respiratory Infections (ALRI)	10804
Tuberculosis and Bronchus (TB)	2484

	Baseline Scenario						
	PM emissions (t/y)	1300.00					
	Population Weighted Concentration of PM (ug/m3)	57.00					
PM2.5	Co-Benefits Scenario						
	Reduction in PM from the Co-benefits Scenario (t/y)	624.09					
	Reduction in PM from the Co-benefits Scenario (ug/m3)	27.36					
	Co-benefits Scenario Concentration of PM (ug/m3)	29.64					
PM Emissions							
Local Economy							

Baseline Scenario

Inemployment rate(%

Per Capita Gross Domestic Product, GDP (\$/y)

		Results					
	COPD	IHD	Stroke	LC	ALRI	тв	Total
Baseline Scenario	-			-			-
Relative Risk (Lower Limit)	1.100	1.239	1.169	1.088	1,306	2.125	
Relative Risk (Upper Limit)	1.311	1.842	1.768	1.520	1.437	2.338	
PAF (Lower Limit)	0.091	0.193	0.145	0.081	0.234	0.529	
PAF (Upper Limit)	0.237	0.457	0.434	0.342	0.304	0.572	
DALYs (Lower Limit)	146.8	2,299.5	1,400.5	120.0	2,532.9	1,314.9	7,814,7
DALYs Upper Limit)	382.6	5,448.4	4,206.8	509.8	3,284.8	1,421.2	15,253.6
Co-benefits Scenario							
Relative Risk (Lower Limit)	1.056	1.177	1.115	1.038	1.153	1.509	
Relative Risk (Upper Limit)	1.187	1.486	1.434	1.305	1.269	1.660	
PAF (Lower Limit)	0.053	0.150	0.103	0.037	0.133	0.337	
PAF (Upper Limit)	0.158	0.327	0.302	0.234	0.212	0.398	
DALYs (Lower Limit)	86	1793	996	55	1438	838	5205
DALYs Upper Limit)	.255	3899	2930	348	2289	988	10708
Health Co-Benefit							
Averted DALYs (Lower Limit)	61	9 507	404	65	🧶 1095	477	2609
Averted DALYs Upper Limit)	🞍 128	♦ 1550	1277	🧶 162		433	4545
Local Economy Improvement							
Health Care Cost Savings (\$/y)				77,27	3		
Unemployment Rate Reduction (%)	4			0.001	Ŷ.		

Chronic Obstructive pulmonary Disease (COD)
Cerebrovascular disease (Stroke)
Tuberculosis and Bronchus (TB)
Lung Cancer (LC)
Acute Lower Respiratory Infections (ALRI)

1700.00 6.36

Multiple benefits from the combined scenario

Reduction in GHG emissions (1000 t)	229.7
Reduction in PM emission (t)	624.1
Averted DALYs	4545
Savings (M\$)	7.727
Reduction in unemployment rate (%)	0.1
Energy security in terms of fuel-saving (t/y)	117

100 Solar Water Heaters (Region-Wise Assessment)

	Ulaanbaatar	Arkhangai	Bayankhongor	Bayan-Olgii	Bulgan	Uvs
Heat (GJ)	1589.6	1445.6	1681.8	1520.5	1435.6	1421.4
GHG (t/y)	307	279	324	293	277	274
PM2.5 (t/y)	3.6	3.4	3.8	3.5	3.3	3.2
DALYs	16	14	17	15	14	14
Savings (100 \$/y)	270	246	286	258	244	241

Ambient temperature has a great impact on the PV cell's temperature

HOB Co-benefit Tool

HOB project in Ulaanbaatar

Air pollution in Ulaanbaatar's ger areas

Credit: UBDHC, Erbar Agarjav

Low efficient stoves and Heat ONLY Boilers (HOB)

In alignment with the Japan-Mongolia partnership to promote the JCM for low-carbon development

HOB Project in Ulaanbaatar

Multiple benefits from the combined scenario

Co-benefits	
Reduction in GHG emissions (t)	92,298
Reduction in PM emission (t)	3,621
Averted DALYs	16,000
Savings (M\$)	26
Reduction in unemployment rate (%)	0.32
Energy Security in terms of fuel-saving (t/y)	200

Wastewater Co-benefits Assessment Tool

Population Equivalent

Health and Economic Co-benefits

UASB+Swimbed

396

DALYS Averted (2000)

	Influ	Influent			Share in total wastewater	
Wastewater Balance	COD (g/m3)	PE*	COD (g/m3)	PE	treatment (%)	
Anaerobic	1,507	802,952	339	401,476	11.9%	
Aerated Activated Sludge	1,507	802,952	57	134,652	19.8%	
Swimbed	1,507	802,952	26	62,099	22.0%	
UASB	1,507	802,952	11	26,930	23.0%	
UASB+Swimbed	1,507	802,952	7	15,525	23.3%	
Total		4,014,760		640,683	100.0%	

Output: DALYs averted Economic benefits

Reference Scenario (BAU): Anaerobic lagoon.

Source: Soedjono, 2011

Intervention Scenarios

- Scenario I (Baseline): A pre-stage aerobic lagoon treatment followed by activated sludge method
- Scenario II: Swimbed
- Scenario III (UASB): Up-flow Anaerobic Sludge Blanket (UASB)
- Scenario IV: Combined UASB and Swimbed

Comparative analysis for a given 35,965 m³/d wastewater flow rate in Indonesia

Impacts related to water pollution gradually decline as a consequence of the implementation of high-performing technologies such as UASB+Swimbed

Multiple benefits from the treatment of 3.4 Mt/day wastewater in Indonesia fish processing industry

Scenario	Reduction in GHG emissions (Mt/y)	Reduction in COD (kt/y)	Averted DALYs (1000)	Savings (\$/PE/Y)	Reduction in the Unemployment rate (%)	Energy Security (GWh/y)
Swimbed	5.0	352	372	50.6	0.573	32.1
UASB	5.4	370	390	53.0	0.571	43.6
UASB+Swimbed	6.3	374	396	53.8	0.580	48.8

Region-wise Health Impact Assessment of Advanced Wasterwater Techology in Indonesia

Thank you very much for your attention

Hooman Farzaneh Associate Professor Interdisciplinary Graduate School of Engineering Sciences Department of Energy and Environmental Engineering

farzaneh.hooman.961@m.kyushu-u.ac.jp

Hooman Farzaneh Eric Zusman Yeora Chae *Editors*

Aligning Climate Change and Sustainable Development Policies in Asia

