Green Hydrogen Feasibility in Developing Countries - Prospects and technical challenges

Dr. Kawnish Kirtania

Associate Professor, Department of Chemical Engineering, BUET Panel discussion at the webinar on Advancing the Net-Zero Agenda through Regional Cooperation in Green Hydrogen in Asia Organized by Institute for Global Environmental Strategies (IGES), Japan August 23, 2023

Hydrogen value chain

Source: The Future of H2, IEA, 2019

Projection of H_2 uses by 2050

• H₂ use to be increased 10 fold by 2050

Global Energy (EJ) demand supply with Hydrogen (Hydrogen Council, 2017)

Incentives and challenges to grow hydrogen market

Incentives will be needed to develop a H₂ roadmap

•	Government
	incentives
•	Mandates

Economics

- Equipment and labor cost
- Efficiency improvement

Industries

- Oil, gas & chemicals
- Transportation
- Power generation
- Domestic cooking (blended with NG)

Environmental impact

- Electrolyzer based H₂ is water resource intensive
- Gasification from coal is common

- Optimization of Emerging Technologies
- Electrolyzer
- Catalytic
 reforming
- Fuel cells
- Gas turbines with H₂ adaptability

~ 16.6 million tons potable water per 1 Mt of H₂ produced

Green hydrogen economics – still work to be done

Source: IEA 2020, Energy Technology Perspectives

Power generation application

- Gas turbines now can take up to around 30% H₂ with Natural Gas reducing 10% emission^{*}
- Major issue is with NOx emission and performance impacts^{*}
- Expected to have the capability to burn 100% H₂ by 2025 by Mitsubishi and Siemens

Image source: <u>https://power.mhi.com/products/gasturbines/lineup</u>

^{*} MHI Report 2019, Initiatives in the Hydrogen Supply Chain Aimed at Realizing a Carbon-Free Society

Issue with transportation

- Liquifying H₂ is one proven option
- Converting to NH_3 and reconverting to H_2 is being considered for easier handling
- There may be several options, but an easy and cheap transportation method will go a long way!

Challenges - Space requirement

• Space for Solar PV, Alkaline electrolysis cells and Water purification plant etc.

For a 700 MW 1 by 1 Combined Cycle plant (100% H₂) *

Power plant area ~13 acres Electrolysis area ~19.25 acres H2 storage area ~14 acres Solar PV area ~10960 acres

Green H₂ production in developing countries

9

A developing country example - Bangladesh

Developing country scenario – possible renewable sources

For example, Natural Gas in Bangladesh is **depleting** fast

Bioenergy and Solar energy in developing countries – Bangladesh as an example

Total power generation capacity of Bangladesh will be 28,520 MW by 2030². According to SDG goal for Bangladesh, 20% of the electricity should be renewable by 2030, however, current share is only 1.23%⁴ of electricity generation and 3.25%³ of final energy consumption

To meet this goal **both biogenic residues and solar energy have to utilized** to their potential to achieve ~20 % **renewables** including wind and hydro-power

- 1. Calculated by SEER Group, ChE, BUET based on 60 million tons of biogenic waste generation per year
- 2. Revisiting Power System Master Plan (2016), Bangladesh Power Development Board, Govt. of Bangladesh
- 3. SDG Tracker, Indicators NPI 20: Increase renewable energy share in total final energy consumption to 10% (SDG Indicator 7.2.1), (2020).
- 4. Annual Report 2019-2020, Bangladesh Power Development Board

A potential H₂ roadmap for developing countries – Bangladesh case

* Hossain et al. (2023), International Journal of Hydrogen Energy 48 (54), 20588-20612

Ongoing Green Hydrogen Projects in Bangladesh

Renewable Hydrogen Generation with Carbon Recycling (ReHyCaRe) from Biogenic Residues of Bangladesh

Funded by

website: https://rehycare.com/

Implemented by

The National Academies of MEDICINE

ReHyCaRe consortium

 Department of Chemical Engineering, Bangladesh University of Engineering and Technology (BUET), Bangladesh (Project Lead)

• Department of Farm Power and Machinery, Bangladesh Agricultural University (BAU), Bangladesh (Partner)

• Department of Applied Chemistry and Chemical Engineering, University of Dhaka (DU), Bangladesh (Partner)

 Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology (FIT), USA (USG-Supported Partner)

Green Hydrogen Feasibility in Developing Countries - Prospects and technical challenges

Dr. Kawnish Kirtania Website: <u>https://kkdwip.buet.ac.bd/</u> Email: <u>kkdwip@che.buet.ac.bd</u> Research group: <u>https://seer-group.org/</u> Project: <u>https://rehycare.com/</u>

