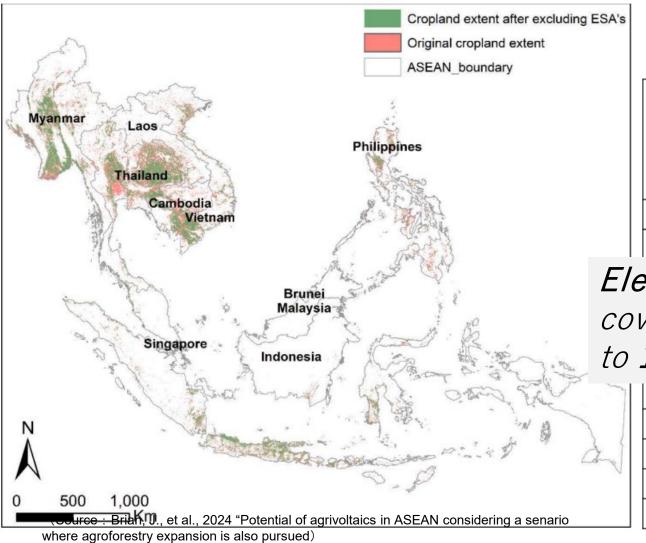
Agrivoltaics as a Pathway to Regional Resilience: Applying Japanese Good Practices to ASEAN

18th December 2025, LCS-RNet 16th Annual Meeting 2025

Yugo TANAKA, Ph.D.

Senior Research Manager, Kansai Research Center, IGES

Key question and argument


Question:

Under what governance conditions can agrivoltaics genuinely function as a pathway to regional resilience in ASEAN countries?

Argument:

Only when it is embedded in strong local governance systems, rather than being treated merely as a technological or investment opportunity

Why Agrivoltaics in ASEAN?

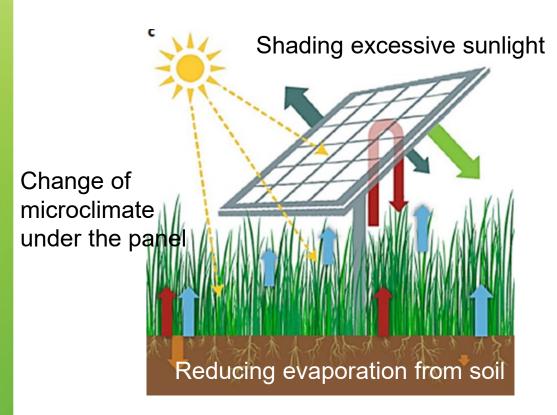
Huge potential

- Food-energy land competition
- Climate stress → need adaptation
- Decentralized energy resources

	Annual electricity generation from agrivoltaics with 1% of potential utilised	Annual electricity generation from agrivoltaics with 10% of potential utilised	Annual electricity consumption in 2050 under the APS scenario (ASEAN Center for Energy)	
	TWh	TWh	TWh	
Brunei	0	0	9	
Cambodia	25	252	17	

Electricity demand in 2050 can be covered by introducing agrivoltaics to 10% of farm land in ASEAN

Philippines	12	116		232
Singapore	0	0		68
Thailand	73	733		355
Vietnam	23	227		483
Total	244	2,546	>	2,108


642

221

Why Agrivoltaics in ASEAN?

Huge potential

- Food-energy land competition
- Climate stress → need adaptation
- Decentralized energy resources

Agrivoltaics can improve quality of crops if appropriately designed

(Source: Barron-Gafford, G.A., Pavao-Zuckerman, M.A., Minor, R.L. et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nature Sustainability, 2, 848–855 (2019))

(出典:農林水産省「営農型太陽光発電高収益農業実証事業の概要」URL: https://www.maff.go.jp/j/shokusan/renewable/energy/attach/pdf/yosan-45.pdf)

Agrivoltaics in reality in ASEAN

Reported agrivoltaic projects without meaningful farming activity (in Vietnam)

Gia Lai省

Binh Phuoc省

Does agrivoltaics enhance regional resilience?

It may improve resilience in terms of agriculture, energy, rural economy However, not just "hardware" but "software" matters

Who rescued people buried alive or trapped in Great Hanshin-Awaji Earthquake?

Passerby Rescue team 2.6% 1.7% Escape on Friends or your own neighbors 34.9 % 28.1% **Family** 31.9%

Resilience is an integrated adaptive and transformative capacity of society, not just physical robustness

(Source : Kobe city)

Local decarbonization initiatives

1 Ownership

Bottom-up approach: Initiatives of each local community are quite important.

2 Partnership

Re-constructing network between rural and urban areas is very important. Private and public partnership in implementation.

Integrated solutions

Integrated development and synergetic benefits of environment, economy, society. e.g. resilience, energy access, food security

Case1: Sosa Model

Revenue from electricity supply **Agrivoltaics** Contributions 5 million JPY/yr company **Property** Rent tax Sosa city Land owners 8 million JPY/yr 20 million JPY/yr

Agrivoltaic facilities are provided as free emergency power during disasters

Almost ten percent of the company's revenues are redistributed to community

Local organizations

 は ソーラー給配所 Mining Childcare

Environmental conservation
Urban-rural linkage

Events etc.

(Source : Citizen Energy Chiba, Co., Ltd.)
(Source : Renewable Energy Institute)

Case2: Rikuzentakata Model

While enhancing agricultural resilience, agrivoltaics enabled highly value added economic activities at underutilized land

Clearance=bird net

Panel=rain shelter

Root area restricted

(Source: Rikuzentakata Shimin Energy Co., Ltd.)

and fertilization

Case3: Chiba Model

A disaster response agreement enables agrivoltaic facilities to contribute local disaster risk management

Implications for ASEAN

- > Local ownership: co-designed and co-governed by local stakeholders
- Agriculture must remain central: food security and rural resilience should be strengthened
- > Institutional and operational preparedness: clear operational protocols must be established for emergency situations.
- → institutional capacity building and governance innovation are key