Messages from the Draft Technical Report on Energy Transition in ASEAN Countries

Xianbing Liu Climate and Energy Area Institute for Global Environmental Strategies (IGES) E-mail: liu@iges.or.jp

Structure of mitigation chapter of the technical report

4.1 Current status, gaps and opportunities	4.2 Model's pathways of a net-zero energy system	4.3 Feasibility analysis of power sector transition	4.4 Integrated roadmap toward net-zero power system	4.5 Enabling conditions on policy and institutions
 Background Regional energy landscape Status quo and the gaps of renewable energy Opportunities for renewable energy development 	 AIM model results (Contribution from NIES) Long-term decarbonization scenarios depicted in other model studies (Summary of existing literature) 	 Ambition level of target setting A case analysis of renewable energy potential Determinant factors of renewable energy development Phaseout/down of coal power plants The way for gas power replacement 	 Feasibility of a net-zero power system and the technology options Cost affordability for net-zero power system transition The anticipated carbon prices in the future 	 Introduction Method Data collection Legal and policy framework (4 countries) Summary and recommendation

Possible pathways, feasibility and technology options for energy transition

Possible but different energy transition pathways

- The study for Thailand and Indonesia using AIM confirms the possibility to achieve net-zero energy-related emissions by 2050 in developing ASEAN by technology measures.
- Important to reflect the country's real conditions and necessary for communications between stakeholders and modelers.

share

- IEA SDS Scenario: 3 times power generation of current level by 2050, and around 70% from RE.
- IRENA 1.5°C Scenario: Around 5 times of electricity demand of current level by 2050, with 90% or even 100% from RE.
- Handayani et al. (2022) NZE Scenario: By 2050, no fossil, 61% from solar PV, 17% from wind and 0.5% from nuclear.
- Scenarios with high RE • Thailand LTS LEDS Scenario (Updated 11/2022): For net-zero CO₂ by 2050, 74% electricity from RE and needs for BECCS.

Scenarios with moderate RE

- Kimura et al. (2022) CN50/60 Scenario: Around 3.2 times of 2017 primary energy supply by 2060, with 56% from RE (Solar PV: 53%) and 26% from H₂ and NH₃ in electricity mix.
- Indonesia LTS LCCP Scenario: By 2050: 43% from RE, 38% from coal power (76% with CCS), 10% from gas, 8% from BECCS.

Higher feasibility perceived for a balanced electricity mix

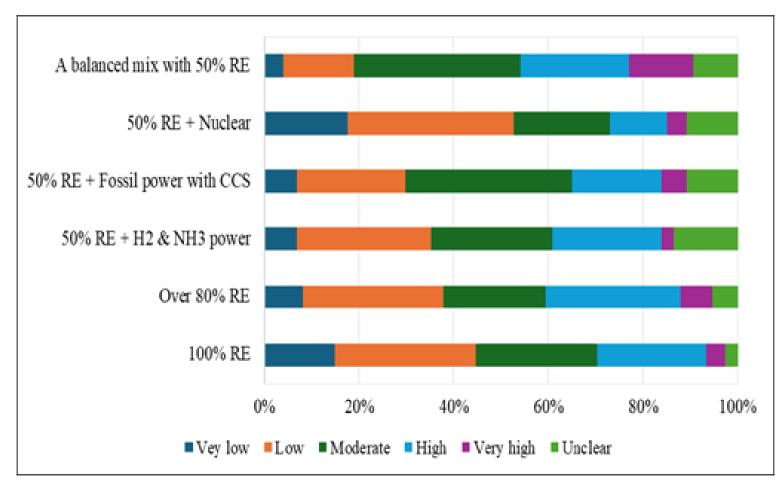


Fig.1: Feasibility of power system decarbonization options in Indonesia (N=74).

Source: Prepared by the author.

- Options with lower feasibility: A 100% renewable power system; and, 50% renewables with nuclear. (Similar in 4 countries)
- More feasible for a balanced electricity mix (i.e., with 50% RE and other carbon-free sources). (Similar in 4 countries)
- Moderate feasibility: Fossil power with CCS; and, hydrogen and ammonia power. (Indonesia and Vietnam)
- Relatively higher and almost equal feasibility: Hydrogen and ammonia-fired power; and, fossil power with CCS. (The Philippines and Thailand)

View on technology options for a net-zero power system

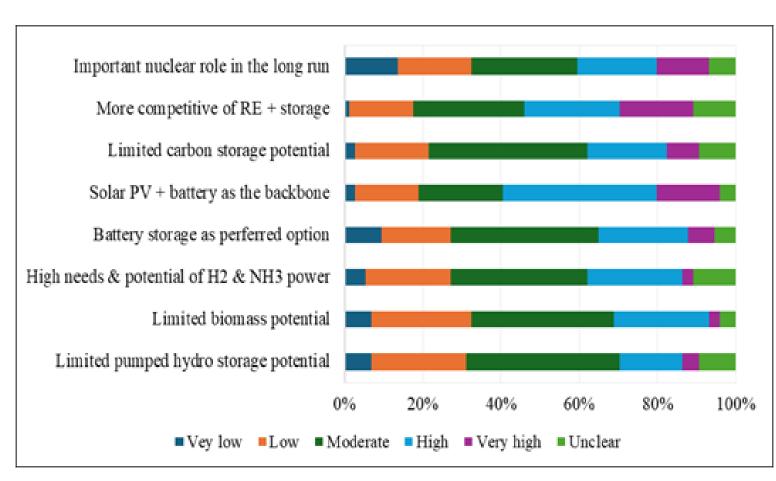


Fig.2: Agreement on technology options for power system in Indonesia (N=74).

Source: Prepared by the author.

- Wide agreement on solar PV with battery as the backbone of future power system. (Similar in 4 countries)
- Renewable energy plus storage would be more competitive. (Indonesia, Philippines and Vietnam)
- Moderate agreement on the potentials of biomass; and, pumped hydro storage. (Similar in 4 countries)
- Less agreement on the role of nuclear power in the long run. (Similar in 4 countries)
- Different agreement about the needs and potential of hydrogen and ammonia power. (Low in Indonesia but high in Thailand)

Constraints and conditions for a net-zero power system

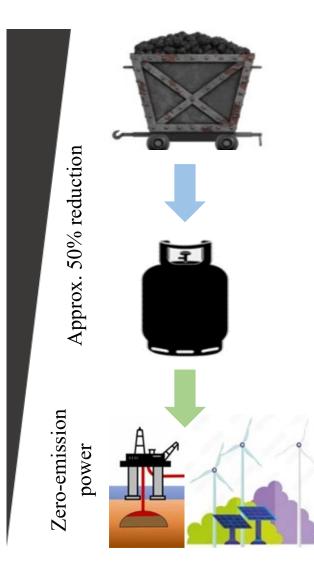
Large potentials but various barriers for renewable energy

► There exist large potentials of renewable energy in ASEAN. Solar irradiance across the region is generally strong.

▶ This is confirmed by a case study of solar PV adoption in the building sector.

► The existence of large renewable energy potentials is well recognized by various stakeholders.

▶ Nevertheless, the development of renewable energy is still at an early stage in ASEAN, especially for variable renewable energy, including solar PV and wind power. ► Various barriers are largely hindering the development of solar PV and offshore wind in ASEAN countries.


► Most economic, policy and technical barriers are viewed significant.

Economic barriers for offshore wind are higher than those for utility-scale solar PV.

Lack of policies regulating proper land-use and environmental impact, and complex bureaucracy of power sector are also significant.

► Societal factors are viewed to be moderate or even minor.

The way for complete replacement of gas power

- To achieve zero emissions, the option is to shift to either gas-fired power with CCS, or hydrogen or ammonia power.
- There are many oil and gas fields in Indonesia, making the country a suitable place for CCS. The practical application of CCS should be accelerated by taking this advantage.
- Necessary to promote domestic production and overseas procurement of green or blue hydrogen and ammonia, and reduce the costs of hydrogen to less than 2 USD per kg.
- Carbon tax in Indonesia, currently levied on emissions from coal power plants, should be also applied to gas-fired power plants. The tax rate should be gradually increased to encourage a shift away from gas-fired power in Indonesia and other ASEAN countries.

Low cost affordability for achieving a net-zero power system

Table 1: Summary of acceptable power cost levels in 4 countries

Country	No. of samples	Cost level with high & very high acceptability (% of current level)	Cost level with moderate acceptability & above (% of current level)	
Indonesia	42	95.1	107.2	
Philippines	56	95.3	107.9	
Thailand	39	97.3	116.8	
Vietnam	36	97.1	111.3	
		1 · · · D 1 · · · ·		

Note: The number in parenthesis is R-squared of the simulation analysis.

- Affordability of power cost change of the Philippines is almost the same as Indonesia.
- Vietnam and Thailand may accept higher cost increases.
- Affordability of 4 countries for power cost increases would be limited, below 20% of current level.



Fig.3: Possibility to accept the change of power costs in Indonesia.

Source: Prepared by the author.

31/03/2025

Limited power generation cost changes viewed for the future

Table 2: Power generation costs predicted by 4 countries

Country	No. of samples	Power costs predicted by the samples (% of current level)			
		2030	2040	2050	
Indonesia	69	84.5-125.5 (105.0)	75.6-140.5 (108.0)	57.7-169.0 (113.3)	
Philippines	116	81.9-112.1 (97.0)	76.7-116.5 (96.6)	66.2-125.1 (95.6)	
Thailand	57	79.7-109.7 (94.7)	72.9-116.9 (94.9)	62.3-127.4 (94.9)	
Vietnam	49	92.8-112.7 (102.8)	90.9-114.5 (102.7)	87.9-117.0 (102.5)	

Note: The number in parenthesis is mean of predicted costs.

- Larger uncertainty in power generation cost changes when forecasting from a longer time horizon.
- On average, Indonesia and Vietnam believe that power generation cost increase would be limited.
- The other 2 countries believe that power system transition may even help reduce power generation costs.

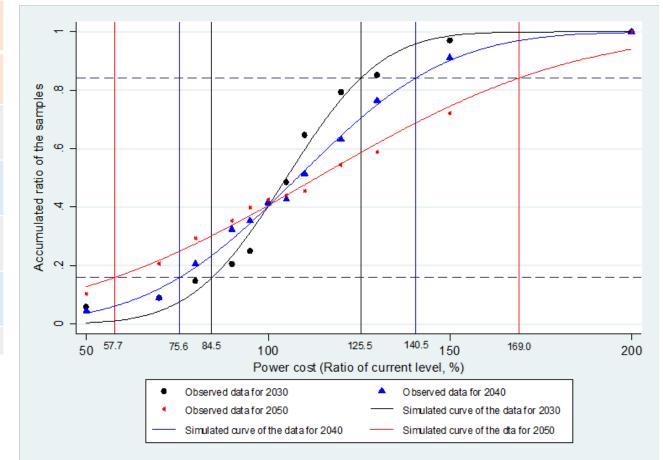


Fig.4: Future power generation cost predicted in Indonesia (N=69).

Source: Prepared by the author.

31/03/2025

Low anticipated carbon prices for energy transition

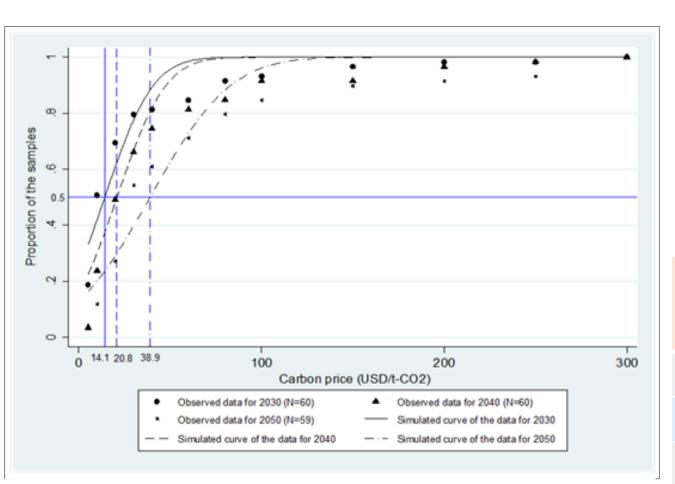


Fig.5: Future carbon prices predicted by the samples in Indonesia.

Source: Prepared by the author.

- Future carbon prices predicted in the Philippines are slightly higher than Indonesia but also limited at about 20 by 2030; 30 by 2040; and, 50 USD/t-CO₂ by 2050.
- Thailand and Vietnam achieved higher prediction of future carbon prices, to nearly 60 USD/t-CO₂ by 2050.
- Energy transition of ASEAN shall be realized by fully applying low-cost technology measures.

Country	No. of samples	Mean of future carbon prices predicted by the samples (USD/t-CO ₂)		
		2030	2040	2050
Indonesia	60 (59)	14.1	20.8	38.9
Philippines	110	22.8	32.7	48.0
Thailand	55	23.2	39.4	58.4
Vietnam	50 (48)	28.0	42.4	57.1

Note: The No. in the parenthesis is the No. of samples with answers for 2050.

Enabling conditions on policy and institutional frameworks

Needs and gaps

- Effective governance is crucial for net-zero transition.
- Lack of legally binding commitment generally in ASEAN countries.
- Absence of evaluation and feedback mechanisms.
- Lack of robust mechanisms using data and information from monitored results to revise and adjust policies.

Recommendations

- To integrate net-zero targets into national legislations, and utilize NDC as a mid-term milestone.
- To establish robust evaluation and feedback mechanisms in addition to MRV systems to build adaptive policy processes.
- To set up formal independent expert bodies to regularly provide objective evaluation.

Thank you for the kind attention!