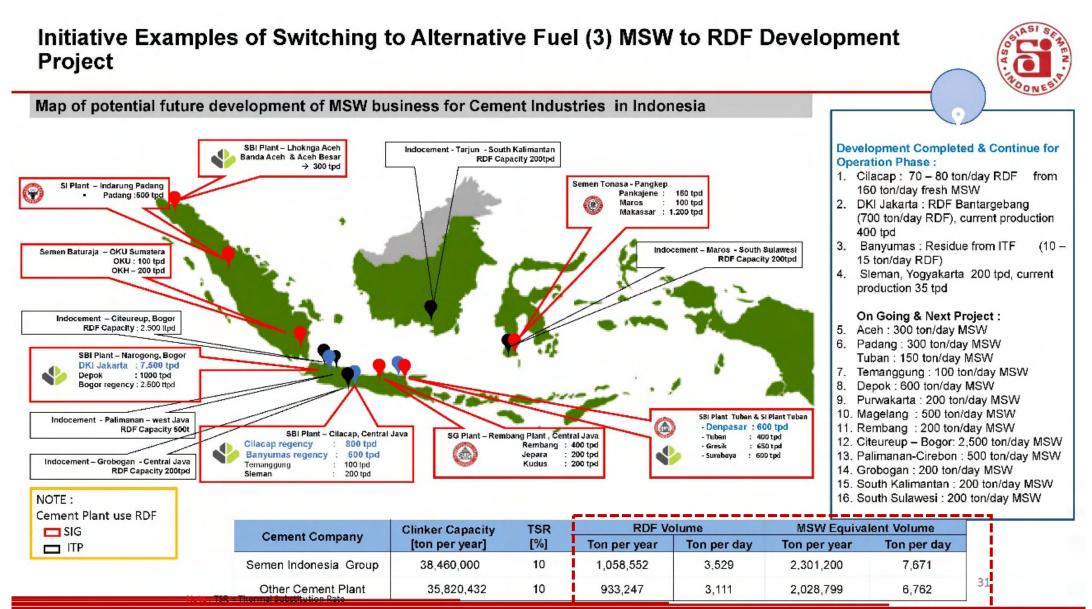
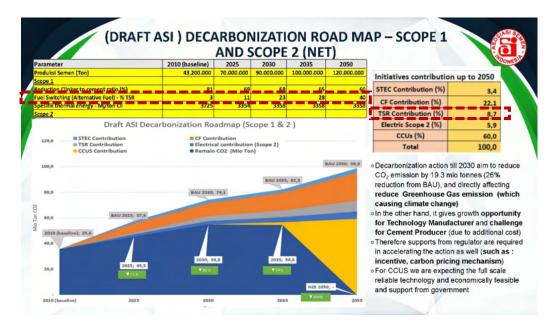
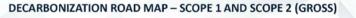
Comparison Analysis on the overall GHGs/SLCPs emissions from Various Types of RDF Facilities in Indonesia

> Presenter: Sudarmanto Budi Nugroho, Ph.D., Research Manager, City Task Force, IGES, Japan


Contribution:Premakumara Jagath Dickella Gamaralalage, Ph.D., Director, CCET, IGES, Japan Miho Hayashi, Program Manager CCET, IGES, Japan

IGES Centre Collaborating with UNEP on Environmental Technologies

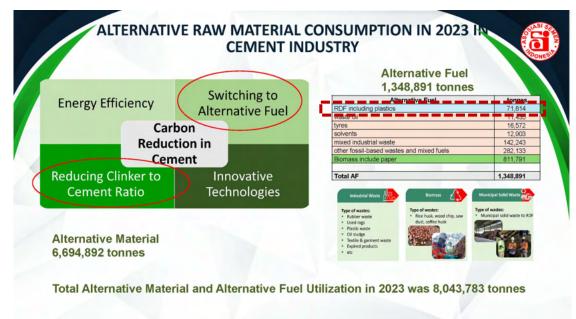

Progress of utilization of RDF in Cement Industries



Roadmap Decarbonization to achieve Net Zero 2060 of Cement Sector & Contribute to Sectoral NDC Indonesia

cope 1		2010	2025	2030	2035	2050
eduction of	Reduction of clinker	81	69	68	65	60
pecific net CO2	%TSR	3	11	23	28	40
	STEC - MJ/ton clinker	3725	3354	3358	3358	3358
	Specific net CO ₂ - kg CO ₂ /ton cem eq	723	574	540	505	442
cope 2	Specific Electrical Energy Consumption (Kwh/ton Cem)	110	95	91	90	89
arbon capture Other Innovative echnology *	Carbon removal through CCUS & Other Innovative Technology (Mio ton CO ₂ removal)	·			2	59,2
	Source : Draft of Indonesia Cement Association Decarb	onization Roadma	0			
	* Note: Depend on availability of government's roi enabling policy related to innovative carbo technology, carbon capture and storage te	on reduction to	echnology in th			
	Depend on availability of government's ro enabling policy related to innovative carbo	on reduction to	echnology in th			

FGD Roadmap Decarbonization Cement Sector, 15 Nov 2024



Initiatives Contribution in 2050								
STEC (%)	3.4	Produksi Semen ekuivalen (Ton)	43.200.000	64.000.000	70.000.000	90.000.000	100.000.000	120,000.000
		Reduction Clinker to cement ratio (%)	81	68,5	69,0	68,0	65	60
CF (%)	22,1	Produksi Clinker	34.992.000	43.845.400	48.300.000	61.200.000	65.000.000	71.820.000
TSR (%)	4.0	TSR Biomass	2	3,1	4,0	8	10	15
Electricity (Scope 2)	5.9	TSR Alternatif fosil fuel	1	6	7,0	15	18	25
	0,0	TSR Traditional Fost Fuel	97	90,9	89,0	77	2	60
CCUS -TBD Need to be		Spesifik thermal energy - Mj/ton Cli	3725	3395	3355	3358	3358	3358
Aligned with Gov (%)	64,6	Scope 2						
Total (%)	100,0	Specific Electrical Energy Consumption (Nwh/ton Cem)	110	98	95	91	90	89

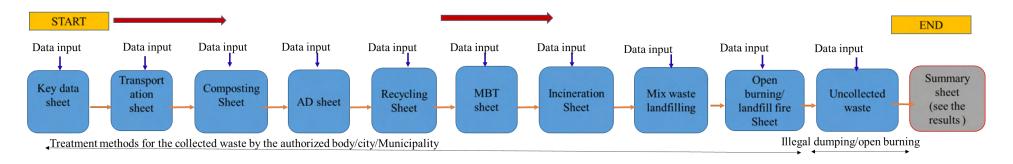
Progress of utilization of RDF in Cement Industries

- 1. Total RDF Utilization by Cement Industries in 2023: 71,814 tonnes
- 2. In 2050, it is expected the RDF utilization can achieve 4 million tonnes per year (equal to 12-13 million tonnes of fresh waste) (ASI, 2024)

RDF utilization by Cement Sector will also contribute around 20% to achieve Zero Emission Zero Waste Program of Ministry of Environment (MOE) in 2050

IGES/CCAC's Emission Quantification Tool (EQT): Calculation of SLCP Emissions based on Life Cycle and IWM Approach

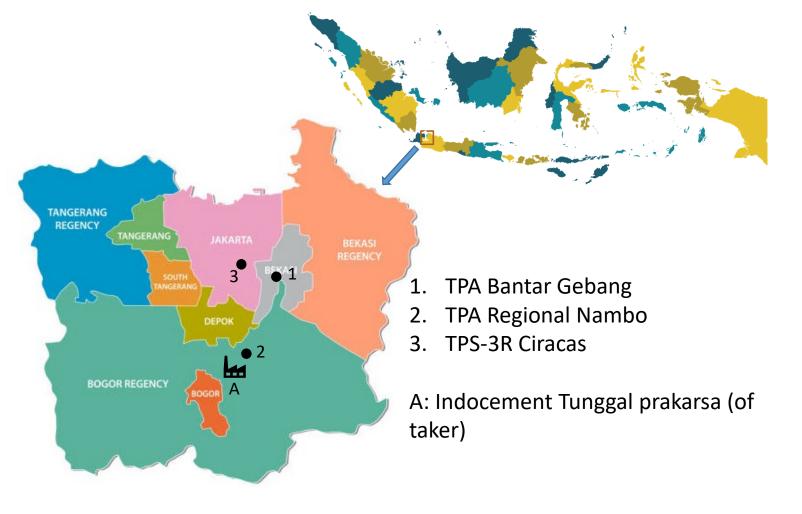
Available here, please download!


https://www.ccet.jp/publications/emission-quantification-tool-eqt-estimation-ghgsslcps-solid-waste-sector

Features of the Emission Quantification tool

- This tool is simple and step by step guidance has been provided to users in all the sheets on how to enter the data and obtain the results
- Special skill is not required and ability to work with excel would be sufficient
- Each and every sheet has designed a way that users can easily move among the sheets, enter the data and obtain the results on their preferred waste treatment options
- □ The tool accounts both SLCPs and other GHGs from waste management considering the entire life cycle

Both emissions and savings potentials is accounted across the life cycle

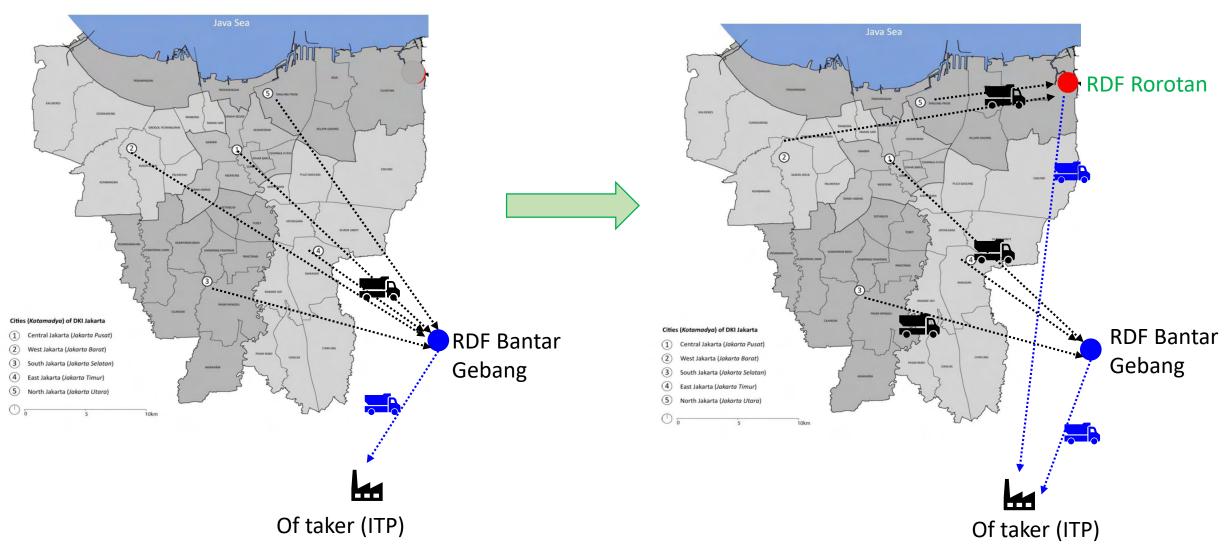


3 Priorities Case Studies Project Profile

 Bantar Gebang a Centralized Facility at Final Disposal Site for Municipal Solid Waste of Jakarta City. Running capacity about 700 ton/day (designed capacity 2000 ton/day)

 TPA Regional Nambo – a centralized medium size facility of West Java province which served to treat waste from 4 different municipalities. The running capacity is 50 ton/day (from the design capacity of Phase 1: 400 ton/day). Final aims to be able to treat 2000 ton/day and

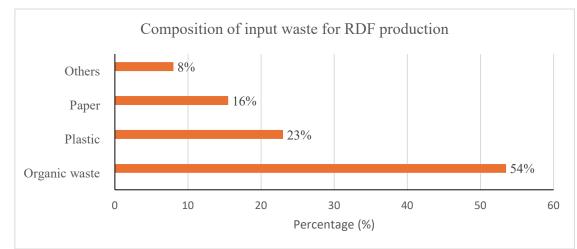
 TPS3R Ciracas – Decentralized RDF facilities near sources (community) with small design Capacity. Running capacity 10 ton/day (Design 20-50 ton/day)


RDF Facilities

- Jakarta (Bantargebang) → Centralized large facility. Of taker are Indocement Tunggal Perkasa (ITP) (Heidelberg Group – Germany) & Solusi Bangun Indonesia (Semen Indonesia Group/SIG, Holcim Group)
- TPA Regional Nambo (Bogor Regency) → Centralized medium size RDF facility to serve and receive municipal solid waste from 4 different municipalities (Bogor City; Bogor Regency; Depok City and South Tangerang City)
- TPS3R Ciracas(East Jakarta) → Small RDF production unit within Jakarta city. Transfer the product to Bantar Gebang for storage and transportation to of taker

Case Study 1: RDF Bantar Gebang (Since 2023)

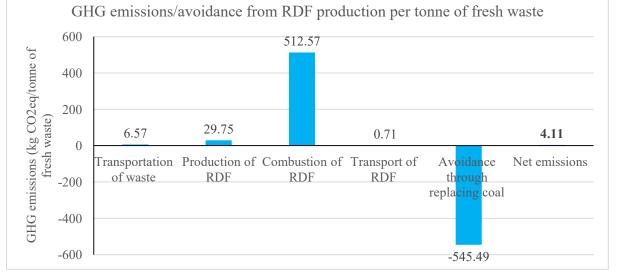
Next near future (Mid 2025 onward)

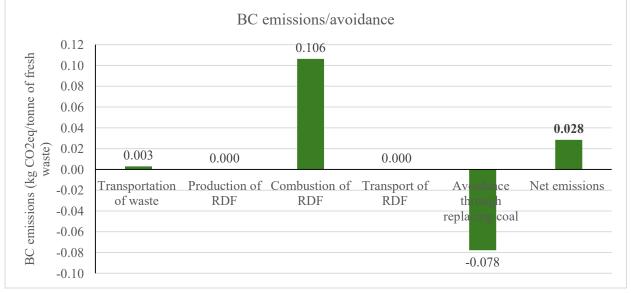

As of now (2024)

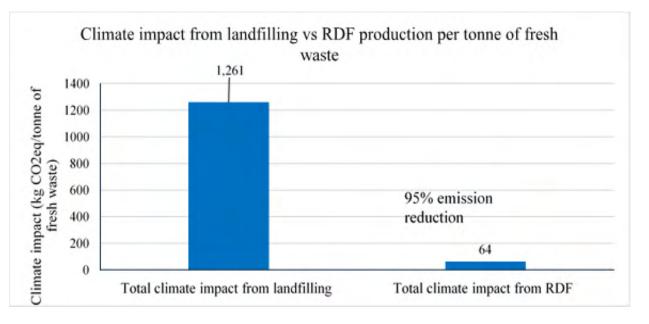
Jakarta: (1) Bantar Gebang since 2023

Two types:

- Mining Landfill (1000 ton/day)
- Fresh Waste (1000 ton/day)



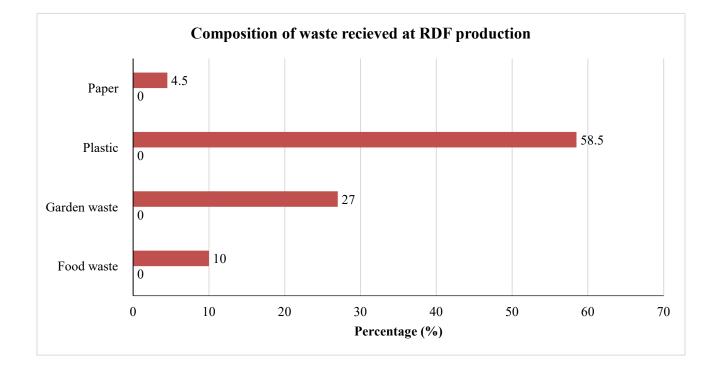




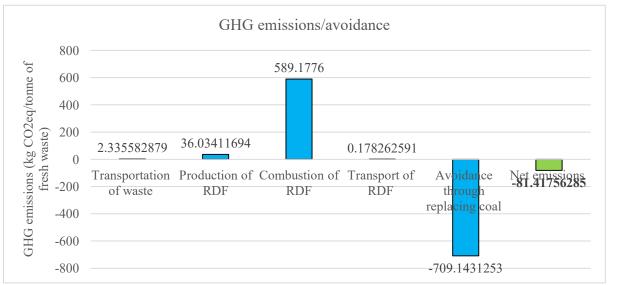
Co-benefits Analysis using EQT Tool

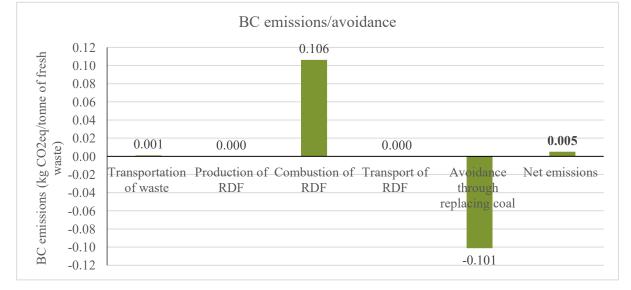
Type of emissions	Description	Amount of emissions/tonne of fresh waste input (kg/tonne of fresh waste)
BC emissions	BC emissions	0.11
	BC avoidance through energy recovery	0.08
	Net emissions	0.03
CO ₂ emissions	CO ₂ emissions	538.66
	CO ₂ avoidance through energy recovery	543.13
	Net emissions	-4.47
CH ₄ emissions	CH ₄ emissions	0.001
	CH ₄ avoidance	0.006
	Net CH ₄ emissions	-0.005
N ₂ O emissions	N_2O emissions	0.02
	N ₂ O avoidance through energy recovery	0.01
	Net N ₂ O emissions	0.01
Net BC emission	S	0.03
Net GHG emissi	ons	-2.46

(2) TPA Regional Nambo (Since Mid 2024)

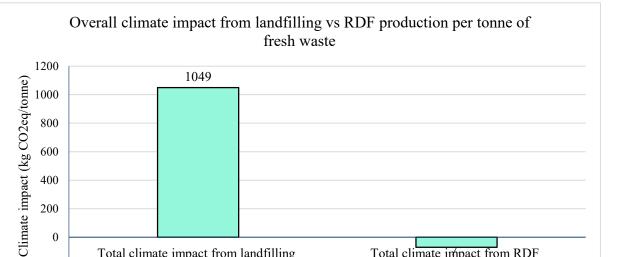

Source of Waste

- 1. Bogor Regency (20 ton/day) (15 km)
- 2. Bogor City (10 ton/day) (7-10 km)
- 3. Depok City (10 ton/day) (7-10 km)
- 4. South Tangerang City (10 ton/day) 30 km
- In the second second
- 🛏 : Indocement Tunggal prakarsa (of taker)
- **=** : Transportation of Fresh Municipal Waste
- : Transportation of RDF

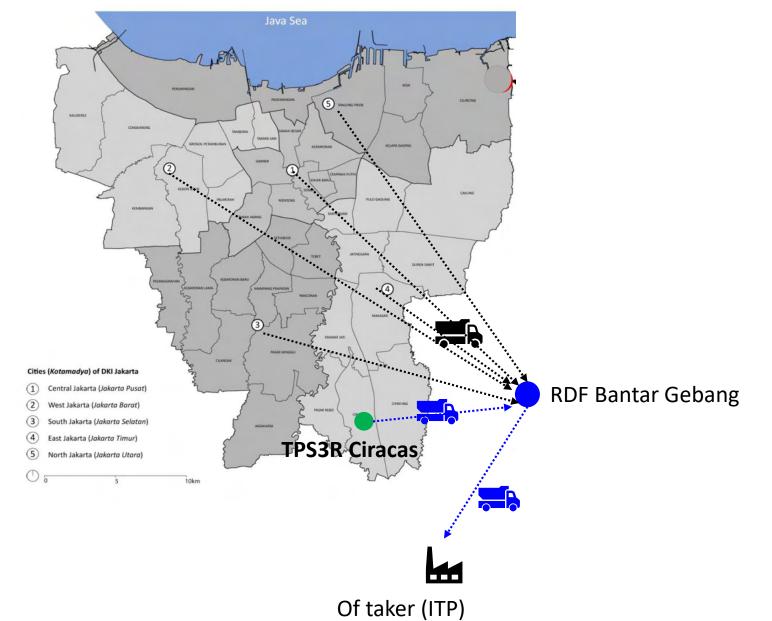




Co-benefits Analysis using EQT Tool


0

-200

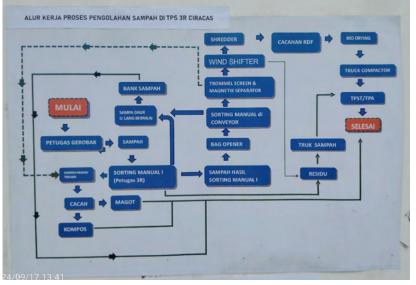

Type of emissions		Amount of emissions/tonne of fresh waste input
	Description	(kg/tonne of fresh waste)
BC emissions	BC emissions	0.11
	BC avoidance through energy recovery	0.10
	Net emissions	0.01
CO ₂ emissions	CO2 emissions	623.35
	CO2 avoidance through energy recovery	706.07
	Net emissions	-82.72
CH ₄ emissions	CH4 emissions	0.001
	CH4 avoidance	0.006
	Net CH4 emissions	-0.005
N ₂ O emissions	N2O emissions	0.02
	N2O avoidance through energy recovery	0.01
	Net N2O emissions	0.01
Net BC emissions		0.01
Net GHG emissions	8	-81.42

Total climate impact from RDF

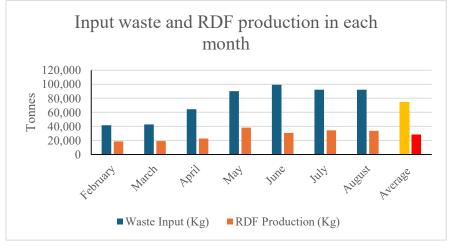
Total climate impact from landfilling

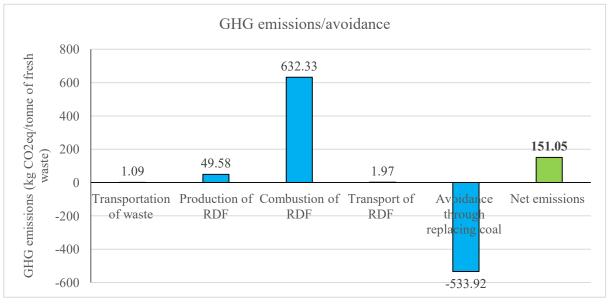
Case Study 3: TPS3R Ciracas (Since Early 2024)

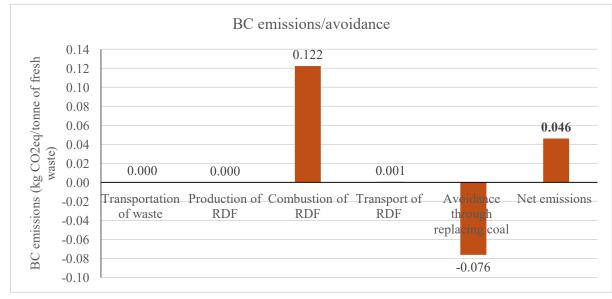
Jakarta: (3) TPS3R Ciracas - 2024

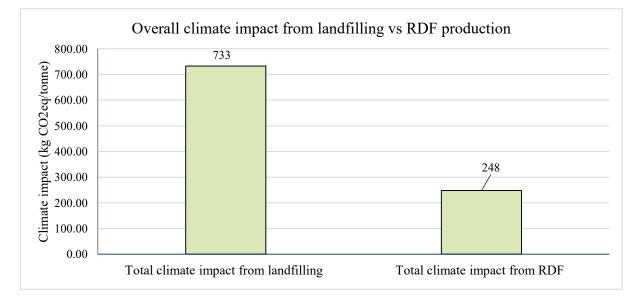

- A small facility to receive waste from neighbourhood community
- Fresh Waste (20-50 ton/day) (no landfill at the facility)
- Residue from TPS3R will be sent over to TPA Bantar Gebang
- RDF product although possible to be transported directly to the of taker, however, at this moment it was transported to RDF Bantar Gebang
- Reference:

East Jakarta : 25-50 ton/day https://m.beritajakarta.id/potret/album/15820/melihatpengolahan-sampah-di-tps-3r-ciracas4.

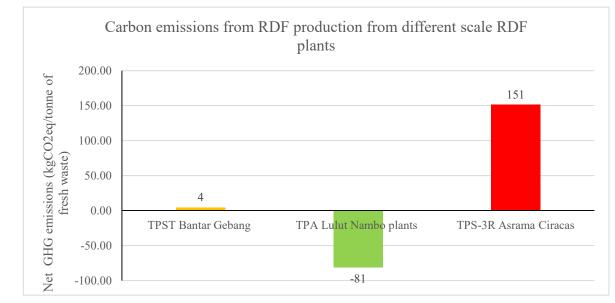








Co-benefits Analysis using EQT Tool


Type of emissions	Description	Amount of emissions/tonne of fresh waste input (kg/tonne of fresh waste)
BC emissions	BC emissions	0.12
	BC avoidance through energy recovery	0.08
	Net emissions	0.05
CO ₂ emissions	CO2 emissions	679.93
	CO2 avoidance through energy recovery	531.61
	Net emissions	148.32
CH ₄ emissions	CH4 emissions	0.001
	CH4 avoidance	0.006
	Net CH4 emissions	-0.005
N ₂ O emissions	N2O emissions	0.02
	N2O avoidance through energy recovery	0.01
	Net N2O emissions	0.01
Net BC emissions		0.05
Net GHG emissions		151.05

Summary of 3 Cases Study

Description	Unit	Bantar Gebang TPA Lulut Nambo		TPS-3R Ciracas	
Type of plants	Туре	Centralized	Centralized	Decentralized	
Designed capacity for					
fresh waste	Ton/day	1000 (Large)	50 (Medium)	10 (Small)	
Calorific value of RDF	Kcal/tonne of				
produced	RDF	4000	5200	3400	
Net GHG emissions					
(fresh waste)	kg CO ₂ eq/ton	4.11	-81.42	151.05	
Net BC emissions					
(fresh waste)	kg BC/ton	0.03	0.005	0.046	
GHG mitigation					
compared to landfilling	Percentage (%)	95%	107%	66%	
Job Creation	No of Workers/Persons	300	46	10	

Thank you

nugroho@iges.or.jp