JAPAN 2050
LOW CARBON NAVIGATOR
Overview and Trajectory Setting
Japan 2050 Low Carbon Navigator
Overview and Trajectory Setting
March 2015

Mustafa Moinuddin, Xin Zhou, Takeshi Kuramochi, Akihisa Kuriyama, Takako Wakiyama
Institute for Global Environmental Strategies (IGES)

and

Shuichi Ashina
National Institute for Environmental Studies (NIES)
What is Japan 2050 Low Carbon Navigator?

- Japanese version of the UK 2050 Pathways Calculator;
- Simulation model for energy system and emissions;
- An interactive simple to communicate tool that allows:
 - To answer the fundamental questions of how far we can reduce emissions and meet energy needs;
 - To develop your own combination of change in different technologies and sectors up to 2050;
 - To outline, in minutes, the results of energy and emissions in a transparent and evidence-based way.
Why do we develop it?

- 4th Basic Environment Plan: 80% reduction by 2050
- Uncertain direction of future energy and climate policy following the Fukushima nuclear accident
- Post-2020 national mitigation target setting for the 2015 international agreement
- International comparison among countries

As a handy and transparent scenario simulation tool, 2050 Low Carbon Navigator serves to facilitate multi-stakeholder discussions.
Simple Operation of Low Carbon Navigator

1. Social Scenario selection
2. Sector-specific project selection
3. Results presentation graph
4. Power, energy, safety, and other themes selection

Basic operational steps:

- Select the social scenario
- Choose sector-specific projects
- Present the results graphically
- Choose themes such as power, energy, safety, etc.
Society Scenarios in Low Carbon Navigator

Common Challenges

1. Aging society
2. Competition with emerging economies
3. Resource constraints

- A: Research and Development (R&D) Society
- B: Made-in-Japan (MIJ) Society
- C: Service Brand (SB) Society
- D: Resource Independent (RI) Society
- E: Share Society

Economic Growth
- Manufacture
 - Overseas
 - Domestic
- Service

Resource Independence

Well-being

Source: Adapted from MOE (2012b).
<table>
<thead>
<tr>
<th>Energy supply sectors</th>
<th>Energy demand sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear and conventional power plants</td>
<td>Transport</td>
</tr>
<tr>
<td>Nuclear power stations</td>
<td>Passenger transport</td>
</tr>
<tr>
<td>Conventional power plants</td>
<td>Freight transport</td>
</tr>
<tr>
<td>Renewables</td>
<td>Residential sectors</td>
</tr>
<tr>
<td>Solar PV</td>
<td>Space heating and cooling</td>
</tr>
<tr>
<td>Wind (Onshore, offshore and floating)</td>
<td>Hot water supply</td>
</tr>
<tr>
<td>Hydropower (Small and medium, and large)</td>
<td>Cooking, lighting and appliances</td>
</tr>
<tr>
<td>Geothermal electricity</td>
<td></td>
</tr>
<tr>
<td>Ocean power</td>
<td></td>
</tr>
<tr>
<td>Biomass energy supply</td>
<td>Commercial sectors</td>
</tr>
<tr>
<td>Volume of wastes and recycling</td>
<td>Heating, cooling and hot water supply</td>
</tr>
<tr>
<td>Bioenergy production and imports</td>
<td>Cooking, lighting and appliances</td>
</tr>
<tr>
<td>Hydrogen production</td>
<td></td>
</tr>
<tr>
<td>Hydrogen production for transport</td>
<td></td>
</tr>
<tr>
<td>Refineries</td>
<td>Industry</td>
</tr>
<tr>
<td>Coke production</td>
<td>Manufacturing and construction</td>
</tr>
<tr>
<td>Petroleum refinery</td>
<td>Agriculture, forestry and fisheries</td>
</tr>
<tr>
<td>Town gas production</td>
<td>Industrial process emissions</td>
</tr>
<tr>
<td></td>
<td>Non-energy GHG emissions from agriculture</td>
</tr>
<tr>
<td></td>
<td>Non-energy fossil fuel consumption in petrochemical industry</td>
</tr>
</tbody>
</table>

Source: Authors.
An Overview (2)

Levels / Trajectories Setting

Level 1: No efforts (existing capacity, or same technology, or no change in consumption)

Level 2: Great efforts (increased renewable energy, advanced technology, or reduced unit energy service demand)

Level 3: Physical limit/Technical potential (Nuclear power generation and renewables)

Source: Authors.
Example of Energy Supply Side: Solar PV

Japan’s solar PV capacity

Scenarios

Level 1	Capacity reaches just over 26GW in 2050, generating 27 TWh/y of electricity. There is roughly 2.2m² of solar panels per person.
Level 2	Capacity reaches 47 GW in 2030 and 87 GW in 2050, and generates 92 TWh/y of electricity in 2050. There is roughly 7.5m² of solar panels per person in 2050.
Level 3	Capacity reaches 76 GW in 2030 and 150 GW in 2050, and generates 158 TWh/y of electricity in 2050. There is roughly 13m² of solar panels per person in 2050.
Level 4	Japan maximizes its efforts in promoting solar PV. Capacity reaches 95 GW in 2030 (producing 100 TWh/y) and 226 GW in 2050 (producing 238 TWh/y. There is roughly 22m² of solar panels per person in 2050.
Level 5	This represents Japan’s physical and economic potential for developing solar PV capacity. Capacity reaches 475 GW in 2050, generating 500 TWh/y of electricity.

Solar PV electricity generation projected by different levels

Source: Authors.
Example of Energy Demand Side: Domestic Passenger Transport Behaviour

シナリオ設定

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>By 2050 each person in Japan travels 1,766 km per year more than today. The mode of transport is the same as of today, with passenger cars (59%), trains (29%), buses (6%), ships (0.2%) and airplanes (5%).</td>
</tr>
<tr>
<td>Level 2</td>
<td>By 2050, each person travels 883 km per year more than today. Less travel is by road (54%) and more by rail (32%) and air (8%).</td>
</tr>
<tr>
<td>Level 3</td>
<td>By 2050, each person travels the same distance as today but with a substantial shift away from cars (49%) towards rail (35%) and air (10%).</td>
</tr>
<tr>
<td>Level 4</td>
<td>By 2050, each person travel 317 km per year less than today. There is major shift away from cars to public transport: 45% passenger car, 37 rail, 8% bus, and 10% air.</td>
</tr>
</tbody>
</table>

Table 3: Total travel demand per person under different scenarios

<table>
<thead>
<tr>
<th>km travelled/person/year</th>
<th>2010</th>
<th>2050 Level 1</th>
<th>2050 Level 2</th>
<th>2050 Level 3</th>
<th>2050 Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10,641</td>
<td>12,407</td>
<td>11,524</td>
<td>10,641</td>
<td>10,324</td>
</tr>
</tbody>
</table>

Source: Authors.

Figure 30: Transport mode shares in Japan under different scenarios

Source: Authors.
What does the Navigator look like?

Excel Spreadsheet and Web Tool

Questions that can be addressed

- How much energy can we supply from different energy technologies?
- How much energy do different sectors use and how can we change this?
- Which sectors are the one we should focus on? Which are less important?
- What could happen to our energy dependency and security?
- Without nuclear, what will be the energy mix for Japan to achieve the 80% emissions target by 2050?
- How much CO2 reduction can be achieved using the most ambitious renewable energy scenarios? At what cost?
- What is the full potential of CO2 reductions in Japan? At what cost? What does the low-carbon pathway look like?
Let’s explore low carbon pathways with Japan 2050 Low Carbon Navigator!

① Go to IGES home page
② Click
③ Click & Enjoy!

For comments and enquiries: ge-info@iges.or.jp
Thank you very much!

Information
For accessing to the Web Tool version: http://www.en-2050-low-carbon-navi.jp/

Contact us at
Institute for Global Environmental Strategies (IGES)
Green Economy Area
2108-11 Kamiyamaguchi, Hayama, Kanagawa, 240-0115 Japan
Tel: +81 (0)46 826 9575 Fax: +81 (0)46 855 3809 E-mail: ge-info@iges.or.jp
URL: http://www.iges.or.jp