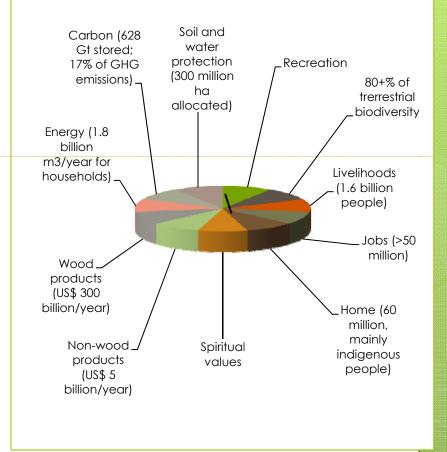
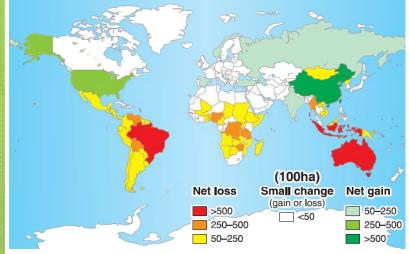
IGES – YNU/SLER Joint Seminar Risk management and sustainability promotion – Issues and challenges 29 November 2011 15:00 – 17:30 IGES Hayama Conference Room 1


REDD+

Managing forests for climate and for sustainable development

1. Global importance of forests

- Natural forests provide a range of ecosystem services that are vital to the human well-being:
 - *Supporting services* soil production and nutrient cycling;
 - *Provisioning services* timber and non-timber products;
 - Regulating services climate and hydrological regulation;
 - *Cultural services* cultural, religious, recreational and scientific values.

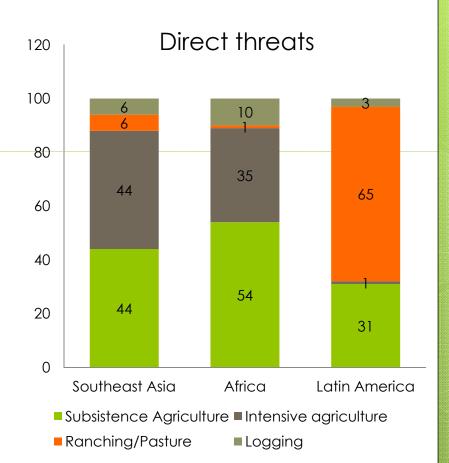

Source: UNFF, 2009 (http://www.slideshare.net/CIFOR/the-un-forum-onforests-facilitating-and-catalyzing-sfm-financing)

2. Global forest crisis

- Almost half of Earth's original forest cover gone, much of it destroyed within past three decades (WRI 1997)
- Globally, on average 13 million hectares of forest were lost each year from 2000 to 2010 (FRA 2010).

Annual change in forest area by country, 2005–2010

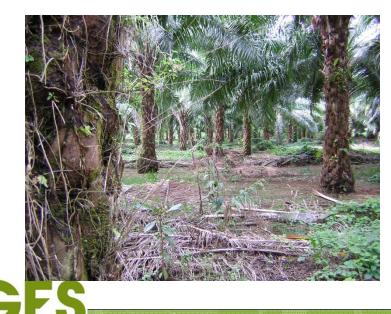
Source: Forest Resources Assessment 2010


Ten countries with largest annual net loss of forest area 2000-2010 (FRA 2010)

Country	Annual Change									
Country	(1,000 ha/yr)	%								
Brazil	-2,642	-0.49								
Australia	-562	-0.37								
Indonesia	-498	-0.51								
Nigeria	-410	-3.67								
United Rep. of Tanzania	-403	-1.13								
Zimbabwe	-327	-1.88								
Dem. Rep. of the Congo	-311	-0.20								
Myanmar	-310	-0.93								
Bolivia	-290	-0.49								
Venezuela	-288	-0.60								

3. Threats to tropical forests

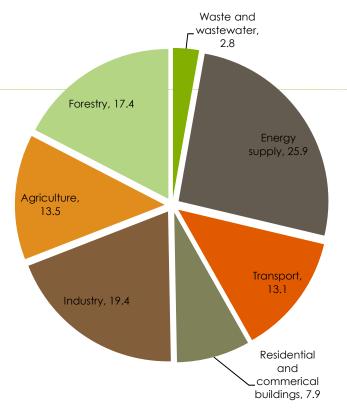
 Underlying drivers: Most forest services are never monetized, thus forests are overharvested or converted to other land uses that provide greater monetary values


Throughout the 1980s and 1990s, rainforests were the primary source for new agricultural land, with over 80 percent of new agricultural land coming from forests

Source: Project Catalyst data analyzed by Rhett Butler; mongabay.com, 2009

Shifting agriculture

Bad logging practices

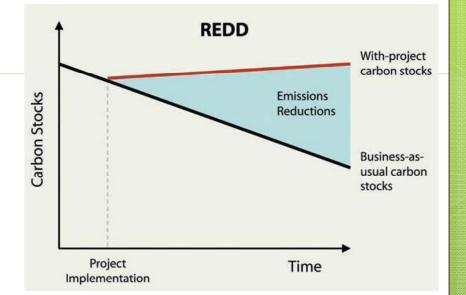

Commercial agriculture

4. The need to better manage tropical forests for climate change mitigation

- The World's forests cover 31% of land area & store more than 650 billion tonnes of carbon (FRA 2010).
- Forestry, as defined by the IPCC, is the third largest source of greenhouse gas emissions

 larger than the entire global transport sector (Eliasch 2008).
- About 96 per cent of deforestation emissions comes from developing countries in the tropics (Eliasch 2008).
- Without tackling forest loss, it is highly unlikely that we could achieve stabilization of greenhouse gas concentrations in the atmosphere at a level that avoids the worst effects of climate change (Eliasch 2008).

Sources of GHG Emissions


Source: IPCC, 2007

5. Enter the concept of REDD+

• REDD+ :

- Puts a value on forests for the services they provide as carbon sinks and stores.
- Aims to make standing forests more valuable than alternative forms of land use
- Provides financial incentives for measurable / verifiable reductions in GHG emission from deforestation & forest degradation and/or increases in GHG removals by standing forests

- REDD = reduced emissions from deforestation and degradation
- "+" = conservation of forest carbon stocks, 4. enhancement of forest carbon stocks, sustainable management of forests
- Can be policies and measures, e.g. regulating best practices for timber harvesting, or projects in a specific geographic area
- Has a set of safeguards

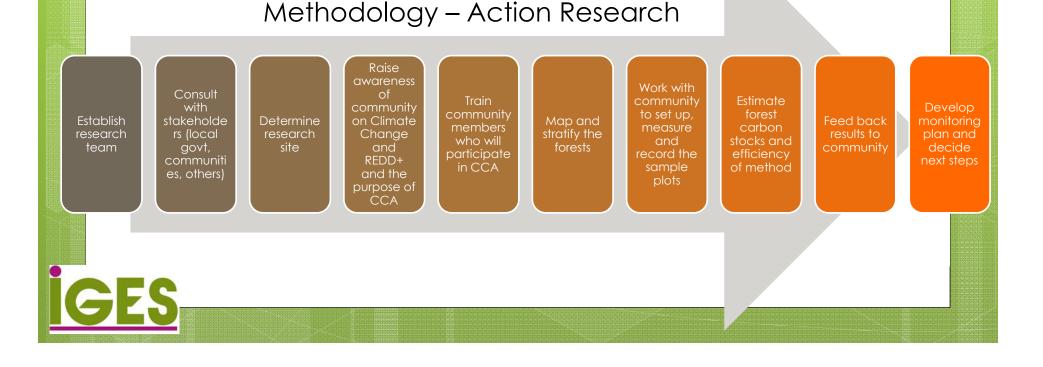
REDD+ safeguards

Transparent & effective governance

Respect knowledge & rights of indigenous peoples & local communities

Full & effective participation

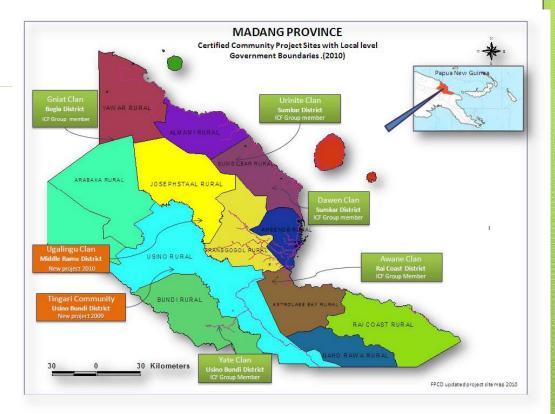
Support conservation of natural forests & biological diversity


Reduce reversals (non-permanence)

Reduce emissions displacement (leakage)

6. IGES Community Carbon Accounting (CCA) Project

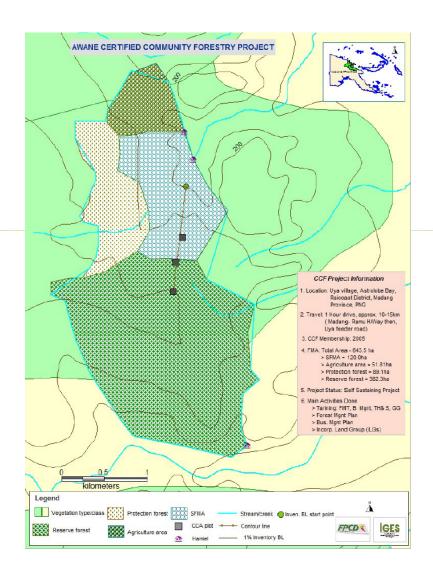
- Project synopsis: Together with local partners, IGES is developing & testing approaches in Papua New Guinea, Indonesia, Laos and Cambodia to engage local communities in monitoring their forest carbon stocks
- Why? To contribute to the development of equitable and sustainable approaches to REDD+ through identifying roles that local communities can play roles & rewarding them for these roles



Partners and Sites

Example: IGES – FPCD CCA Action Research in Madang Province, PNG

• Area: 9,117.84 ha, consisting of 5 separate forest areas owned and managed by communities


Community carbon accounting awareness and training

- Building capacity of research/facilitation team
 - Training on good practice for forest carbon accounting
 - Training on GIS
- Awareness and training of community members
 - Awareness on climate change and carbon trading
 - In-field training on diameter, height and deadwood measurements, and on establishing nested plots

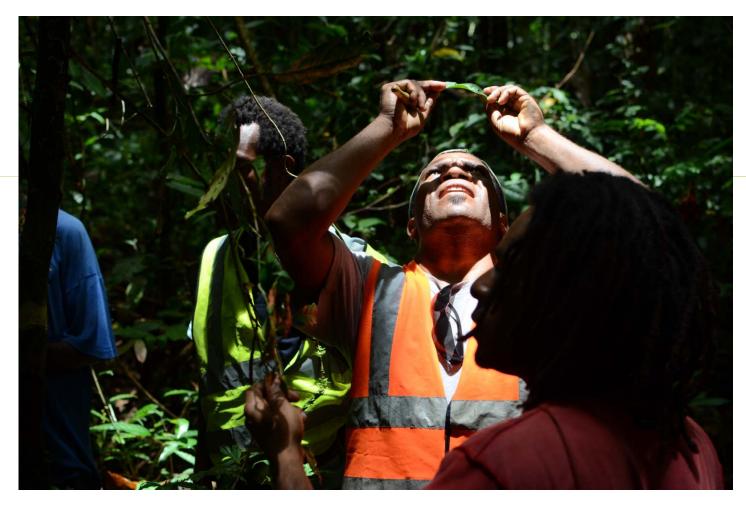
Mapping and stratification

- Foresters facilitate discussions between communities to confirm traditional forest boundaries
- Foresters and clan members delineate forest and strata boundaries using GPS
- Carbon and other data uploaded to GIS


Measurement

- Sample plots across 5 forests established
- Trees tagged
- Parameters recorded/measured:
 - Above ground living biomass carbon pool
 - Measure trees with diameter ≥5cm:
 - Record
 - Species,
 - o DBH,
 - Total height,
 - Merchantable height
 - Deadwood carbon pool:
 - Measure
 - Standing deadwood diameter at base and bole top; tree condition
 - Lying deadwood (line intersect method) diameter at intersect; decay

Plot establishment and tree tagging / marking



1

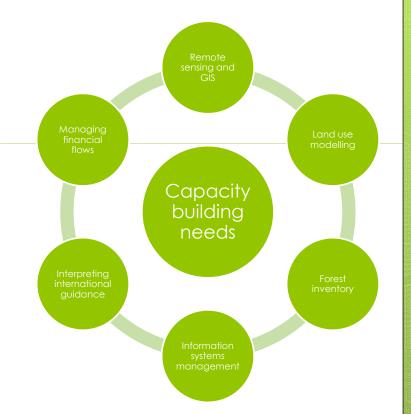
Species identification

Diameter measurements

iges

Height measurements

Deadwood measurements


Data analysis

IGES

						. I						1										
FMA					rahman																	1
Stratu	m desc	ription		Low montane HM vegetation class unlogged forest																		
Purpo	se		ABLB	ABLB and deadwood measurement, tree tagging																		
Surve	y date		23-Sep-11																			
Surve	y team	members																				
Baseli	ine deta	ails	Latitude: 145.35235 Longtitude: 5.76553 Forward Bearing 175 Distance ??																			
Plot d			Latitude: 5.76524 Longtitude: 145.34794 Aspect 52 Altitude: 250 MASL Slope: 45 Slope position: 4																			
Distur	bance		Minor landslip 15%; Wind throw, 60% canopy cover; heavy litter decomposition; sparesly populated forest																			
	Survey time Start: 13:27 Finish: 16:43 Total 3 hours 16 minutes																					
Time to reach plot 72 minutes																						
			Height (m)																			
										TH -	TH-	Wood		AGLB						Basal	C/ha (kg)	C/ha (kg)
Plot	Tree			DBH	Distance	TH		POM		measured	defaults	Density	AGLB	(kg)	Carbon	Carbon (kg)			Adjusted	area	height	height
No.	No.	Species	POM	(cm)	from tree	(%)	(%)	(%)	MH (m)	(m)	(m)	(g/cm3)	(kg)	defaults	(kg)	defaults	EF	Slope	EF	(m2/ha)	measured	defaults
3		MYR	1.3	11.9		68	30		7.4	12.3		0.4	35.2		17.6	19.2		45	90.5	1.0	1594.1	1740.2
3		MAS	1.3			46	30		6.0				9.9		5.0				362.0	1.0		1729.5
3	- 3	•	1.3	9.2		40	5	-23	5.5	10.8			23.5		11.8	11.8		45	362.0	2.4		
3	- 4	•	1.3	5.2		52	35		7.6	9.4		0.5	7.1		3.5	2.5			362.0	0.8		
3		POM PIN	5.4		20.9	73	20	-25	14.5	25.3	32.1	0.6			745.4	934.1	16	45	22.6	4.4	16867.5	21138.7
3		CRY	1.3	16.4		45	13		6.1	10.1	17.6	0.5	63.6		31.8	53.8	64		90.5	1.9		4869.8
3		PIM AMB	1.3	28.0		64	32		12.4	16.6	23.5	0.5	286.3		143.2	198.6	16		22.6	1.4		
3		PIM AMB	1.3	27.8		67	25		10.8	17.1	23.4	0.5	291.1		145.6	195.2	16		22.6	1.4		
3		BUC	1.3	22.5		76	45		13.0	18.2			130.9		65.5	77.9	16		22.6	0.9		
3		ELM PAP	1.3			90	51		12.2	18.3		0.4			228.6	334.0	16		22.6	2.6		
3		STE AMP	1.5			80	40		16.7	25.3			526.4		263.2	304.6	16		22.6	3.0		
3		FLI PIM	1.5			120	69		17.5	27.4	37.1	0.4			636.7	846.7	16		22.6	5.0		
3	13		1.3			58	36		11.1	14.7	20.3		155.1	210.0	77.5	105.0	16		22.6	0.8	1754.2	
3		CEL LAT	1.3	~		85	41	-13	8.3	14.0					158.8	299.0	16		22.6	1.8		
3		MAL	1.8			21	-1	-6	2.7	6.6		0.6	136.9		68.4	213.3	16		22.6	1.2	1548.7	4825.4
3		FLA	1.7	54.0		86	41		15.8	27.3		0.5			781.3	1137.8	16		22.6	5.2	17677.9	
3		MYR	1.3	23.9		88	46		14.4	21.4		0.4		220.0	110.0	110.0	16		22.6	1.0		
3	18	•	1.5		18.1	82	24		12.5		28.7	0.5		876.6	344.3	438.3	16		22.6	2.7	7791.4	
3	19	PIM AMB	1.3	20.8	12.6	100	0	-62	7.9	18.6	19.7	0.5	183.1	192.3	91.5				90.5	3.1	8284.2	8702.9
Basal Area (m2)/ha														41.4								
															1	fotal Carbon/h	ia (Mg)				105.4	139.8
																I						

7. Key issues for REDD+

- REDD+ needs highest level political support in each country
- REDD+ needs to be designed and implemented in each country through multi-sectoral, multilevel (national and sub-national) and multi-stakeholder organisational frameworks for REDD+
- Local level awareness campaigns are critical
- Well-organised and targeted capacity building in countries preparing for REDD+ required. Common capacity building needs are

For more information: Henry Scheyvens

Indr

Director, Natural Resources Management Group Institute for Global Environmental Strategies 2108-11 Kamiyamaguchi, Hayama, Kanagawa Japan 240-0115 Email: scheyvens@iges.or.jp Web site: http://www.iges.or.jp

offention

OU