

CO₂ Reduction under the Law on Air -Case Study from Japan-China Co-benefits Joint Study-

4 July 2011 New Market Mechanism and MRV Workshop at Ulaanbaatar

Yuriko KOYANAGI

Assistant Researcher, Market Mechanism Group, IGES

Contents

1. Introduction

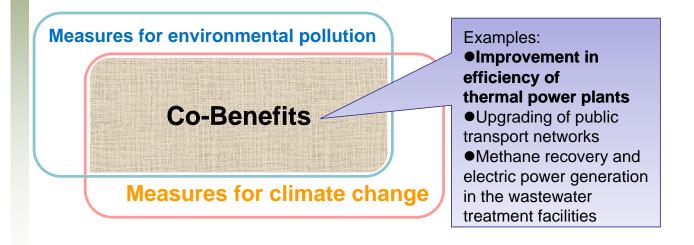
- > What is a Co-benefits Approach?
- > Japan-China Co-benefits Cooperation
- Pollution Control Plan in Panzhihua City

2. Methodologies

- Case Study: Closure of Power Generation Unit
- Case Study: Closure of Kiln (Cement Sector)
- Results of Quantitative Evaluation

3. Way Forward

- Possibility of Co-benefits Quantitative Evaluation in Mongolia
- > FYI: Co-benefits Evaluation Manual



1. Introduction

The background of quantitative evaluation on Chinese local government pollution control plan

What is a Co-benefits Approach?

An approach aimed at reducing greenhouse gas emissions and preventing environmental pollution at the same time.

Japan-China Co-benefits Cooperation

The Statement on the Joint Implementation of Co-Benefits Projects by the Ministry of the Environment of Japan and the Ministry of Environmental Protection of the People's Republic of China was signed. (December 2007)

Panzhifua City, Sichuan Province
A joint study on evaluation of the impact of co-benefits on the environmental pollutant reduction plan, as well as training for capacity building were carried out.
Cooperation Target Area

The annual reductions of SO_2 and CO_2 by air pollution control in iron and steel industry were 56 thousand tons and 210 million tons simultaneously.

Panzhihua City, Sichuan Province

Pollution Control Plan in Panzhihua City

- Goal for 5 years during 2006-2010
- 22% energy consumption reduction
- SO₂ emission reduction 33,741t/year

Sectors

- Air Management (SO₂ ER)
- Water Management (COD ER)
- Waste Management

Measures

- Structural Adjustment
- Project
- Management

National Level

11th Five year Plan for Environmental Protection (2006-2010)

Province Level

11th Five year Plan for Environmental Protection (2006-2010)

City Level

11th Five Year Plan for Environmental Protection (2006-2010)

Pollutant Control Plan

2. Methodologies

How to calculate SO₂ and CO₂ emission reduction? Case study on evaluating structural adjustment

Case Study of ER_{SA}: Closure of Power Generation Unit (50MW)

Pollutant Emission Reduction

 SO_2 Emission Reduction = SO_2 Baseline Emission from the facility – 0 (closure)

 $ER(SO_2) = M \times S \times (64/32 \times 0.8)$

- = 111,400 x 0.0072 x 1.6
- $= 1,283 \text{ t-SO}_2$
- •ER (SO₂) :Annual SO₂ emission reduction from facility
- M: Annual Coal consumption for power generation 111,400t
- •S: Average sulfur content of coal 0.72%
- •64/32: Mass ratio between S and SO_2
- •0.8: Combustion efficiency of coal 80%

✓ Just changing the parameters **M**, **S** and **0.8**, the same methodology is applicable to Mongolian power generation unit.

Case Study of ER_{SA}: Closure of Power Generation Unit (50MW) (cont.)

GHG Emission Reduction

 CO_2 Emission Reduction = CO_2 Baseline Emission from the facility – 0 (closure)

 $ER(CO_2) = M \times C \times (44/12)$ = 111,400 x 0.5 x 3.67 = 204,233 t-CO_2

•ER (CO₂) :Annual CO₂ emission reduction from facility

•C: Average carbon content of coal 50%

•44/12: Mass ratio between C and CO_2

✓ Just replacing the parameter S(sulfur content of coal) with C (carbon content of coal) and removing 0.8 (combustion efficiency of coal), ER(SO₂) formula is turned into ER(CO₂). ✓ ER(SO₂) and ER(CO₂) are also applicable to calculate the emission reduction from steam boiler.

> Case Study of ER_{SA}: Closure of Kiln (Cement Sector)

Pollutant Emission Reduction

SO₂ Emission Reduction

= SO_2 Baseline Emission from kiln – 0 (closure)

 $ER(SO_2) = SO_2 - EF \times P$ = 2.638 x 10⁻³ x 102,398 = 270 t-SO_2

•ER (SO_2) :SO₂ emission reduction from kiln

- •SO₂-EF: SO₂ emission factor per clinker 2.638 x 10⁻³ t-SO₂/t-clinker
- P: Annual production quantity of clinker 102,398 t-clinker/y

✓ Just changing the parameters(SO₂-EF and P), the same methodology is applicable to Mongolian cement sector.

9

Case Study of ER_{SA}: Closure of Kiln (Cement Sector) (cont.)

GHG Emission Reduction

CO₂ Emission Reduction

= CO_2 Baseline Emission from kiln – 0 (closure)

ER(CO₂) = CO₂-EF x P = 0.619 x 102,398 = 63,384 t-CO₂

ER (CO₂) :Annual CO₂ emission reduction from kiln
 CO₂-EF: CO₂ emission factor per clinker 0.619 t-CO₂/t-clinker

✓ Just replacing the parameter SO_2 -EF with CO_2 -EF, ER(SO₂) formula is turned into ER(CO₂).

11

Results of Quantitative Evaluation

Measure			SO ₂ ERs (t-SO ₂ /y)		CO ₂ ERs (t-CO ₂ e/y)
Structural	Closure of 4 Power Generation Units (50MW)			6,757	1,006,363
Adjustment	Closure of 2 Sintering Machin	closure of 2 Sintering Machines			0
	Closure of 2 Wet Rotary Kilns 194	63,384			
	Closure of 8 Coke Ovens	cf. Goal for 5	·	1,654	404,487
	Closure of 3 Shaft Kilns	yrs(2006-2010):	:	67	100,802
	Closure of 5 Steam Boilers	33,741t-SO ₂ /y		3,080	513,333
	Closure of 2 Limekilns			43	9,197
	Closure of 1 Shaft Furnace			40	8,470
Project	1 Waste Gas Settlement utilizing ammonia water			19	0
	6 Flue Gas Settlement utilizing desulfurization		:	3,116	-2,074
	Installation of 5 Desulfurization Equipment		2	9,744	0
	Upgrading of 2 Sintering Mac	chines	1	1,000	0
Total				5,843	2,103,962

Source: Dr. Hiroaki TAKIGUCHI (2011) GHG Reduction in Developing Countries and a Co-benefits Approach, Environmental Research Quarterly, Feb 2011 No. 160, p. 69

3. Way Forward

A Co-benefits Approach is a useful tool to evaluate the Air Pollution Reduction Program in Mongolia.

Conclusion: Possibility of Co-benefits Quantitative Evaluation in Mongolia

Synergy will be expected between:

i) Pollution control measures under the Law on Air

- ii) GHG mitigation actions under Mongolia's NAMA
- i) and ii) can be calculated using almost the same methodologies with one or two parameters replaced.

We can utilize the following material:
 Result of Japan-China Co-benefits Joint Study
 Co-benefits Evaluation Manual

For you information: Co-benefits Evaluation Manual

The Manual...

- Provides quantified and simple methods to evaluate effectiveness of Co-benefits, including environmental pollution improvement and GHG mitigation measures
- Promotes public/private entities to implement effective CDM or new market-based mechanism projects with Co-benefits Approach

Manual for Quantitative Evaluation of the Co-Benefits Approach to Climate Change Projects Version 1.0 June 2009 Ministry of the Enviroment, Japan

www.kyomecha.org/cobene/e/tools.html

Co-benefits Evaluation Manual (cont.)

Evaluation Methodologies

Level	Description of Evaluation Methodology	Explanation
Tier 1	No calculation Based on evaluation criteria corresponding to the actual details of the activity.	When it is difficult to obtain the data for the quantitative evaluation. This approach is the easiest to implement.
Tier 2	Using a predetermined equation and the available measurement data.	Use actual measurement data. Where no measurement data is available, default values are used.
Tier 3	Using measurement data for activities and parameters, and <u>using specific</u> equations.	Use actual measurement data and specific equations.

15

Co-benefits Evaluation Manual (cont.)

Evaluation Criteria for Tier 1 Category: Air quality improvement

Evaluation Criteria	Example	Expected Emission Reduction	Grade (Certainty of reduction)
<u>Certain</u>	 Fuel switching (to fuels with low sulphur and low nitrogen content) improvement of combustion equipment. Upgrading to high-performance boilers installation of waste-heat and exhaust-gas recovery equipment. 	Large	5
<u>High</u> probability	 Installation of flue gas desulfurization equipment. Installation of flue gas denitrification equipment. Installation of particulate precipitators. 	Large	3
	 Regulation of air pollutant emissions. Low interest financing and tax incentives relating to investments needed to promote implementation of air pollutant emission reduction measures. Subsidy programs for research and development 	Small	2
<u>Likely to</u>	 Provision of related information through related organizations Technical guidance Education and awareness raising 	-	1