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Life Cycle Assessment (LCA)
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Life Cycle Inventory (LCI) and Life Cycle Impacts Assessment (LCIA)

Functional Unit
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Comparing apples with oranges
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LCIA Characterization Factors (Now Moving from Beer to Microplastic)

Indicator of Damage = Characterization Factor x Environmental Intervention

Plastic Leaked into
Environment

Fate Factor (FF) x Exposure Factor(XF) x Effect Factor (EF) = Characterization Factor (CF)
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LCA is not Perfect

Here it is, the reality of LCA!

Expectations

| Chris Koffler. Thinkstep

Assess the potential
environmental impacts
of product systems
(limited by availability
of data and
methodology)

Identify potential hot-
spots and areas of
improvement

Avoid burden shifting
and identify unintended
consequences

Explore scenarios of
future changes

Assess all relevant
environmental issues
Assess any
environmental issue

Predict actual or precise
environmental impacts

Predict the exceeding of
thresholds, safety
margins, or risks

Predict market
responses to changes in
production and
consumption



PET Bottle LCA Case Studies Meta Analysis

Typical limit of LCA time horizon
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Microplastics and Nanoplastics Research

The fields of microplastics and nanoparticle research share challenges
along several common threads. Risk assessment from both needs to be

integrated with LCA abproaches.

Brander et al 2020
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Risk Assessment

New or shared challenges faced by micro and
nanoplastics

e (Can we address secondary (degradation, breakdown,
fragmentation) products?

* Need for dose-response data for environmentally relevant
concentrations or exposure scenarios. But what is
environmentally relevant, do we really know?

risk

-

lon ENM Bulk

o
o

Lessons learned:

e Need better understanding of mechanisms of action to
accurately assess risk
e Better knowledge of smaller size fractions in the

o
o

Cumulative Probability
o
=

o
ro

o

environment and their concentrations will improve Concentration (mg/L)

exposure assessment. Garner et al 2015, ES&T




Regulatory concerns

Shared challenges faced by micro and nanoplastics

e Current frameworks e.g. LCA don't microplastic persistence,
fragmentation, how to avoid regrettable substitutions?

e Human and environmental exposure widely documented, what

next?
Plastic sources Exposure %
Proposed approaches @@ _________ 53 ) —p/T\\—n\.
e Cap on virgin plastic production \O

=

recommended by scientists, as well as move @
to circular economy.

e Is this realistic? How do we use available @ ------------------- bl
data on risk combined with LCA to assess i

# plastics in gut

4
eo

different scenarios? Nor et al. 2021




Integration of plastic litter impacts into LCA
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The data we need in LCA and
ways to get it

e LCIA use environmental sampling and
laboratory toxicity data to calculate
characterization factors (CFs) for
impacts arising from emissions to the
environment.

This exposure and toxicity data to aid
understanding and provision of data
that is as useful as it can be across these
disciplines.

LCIA relies on results from sampling
and laboratory studies in order to
derive fate and effect factors.

It is vital that the data LCIA experts
mine from literature is of relevant detail
and quality for the derivation of CFs.
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LCA’s (synergistic) interaction with
Risk Assessment, Ecotoxicology,
Toxicology, Material Flow Analysis,
etc., etc., etc...

e LCAinherently relies on data from other fields of
study, both directly and indirectly.

e LCIA (and the characterisation of MNPs) inherently
relies on metadata from a variety of fields, but
particularly:

o

o
o
o

0]

Toxicology

Ecotoxicology

Materials Science

Marine Pollution (environmental
sampling/monitoring)

Etc. (don’t forget about hydrology,
sedimentology, oceanography)

Pauna and Askham, 2022

Effect of MP

(j) on
Biodiversity
Characterized
Effect of MP (j) on LCA - Endpoint Emissions
Individual (Delta N LCA - Midpoint
Biodiversity)
Weighted
Hazard
Potential of
MpP
Threshold Levels C;argcl§nzed
1M1SS10NS
Effect of MP reshold Levels
() on Risk Assessment
Individual N
N Project Call
Effect of MP (j) on International
Individual Guidelines a
> S
LCIA MP . . %
N Characterization | Characterisation Risk Information E
Effect of MP Factors v | | %
()] on(Si;;)ecLes MP ) B %
_ Sources Project 5 3
s (LCDH Call £ E
== = Delta MP ? “
=3 5 3
=5 3 Action B
;:4_'5 i 0_2 E Delta | B .
51 =8 MP Feedback Regulation
= Action 20—
= £/8
SE Regulation
v
ﬁ Sampling (Field,
; in situ,
2 g Environmental)
£lg
=E Representative =%
o Information of =3 E
= Environment a5 g
=53
|
Effect of MP (j) on
Species (i)
MP (j)
. Presence in
MP ) . Individual
Presence in
Species (i)
Toxicology



Way Forward

Which fields of study is do you think LCA is reliant on, how could this change?
How can an interdisciplinary outlook benefit micro and nanoplastic research in
the project planning stages

Is the quality, quantity, and geographic diversity of data available on MNP
hazard and risk to the environment and human health sufficient to improve
LCA models globally?

How do we best validate LCA models, given this is an excellent opportunity for
synergistic improvements across relevant disciplines?
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