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Abstract

Background: Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by
anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the
geographical distribution of disease risk is to define the distributions of the reservoir and vector species.

Methods: We used macaque and mosquito species presence data, background data that captured sampling bias in
the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes,
to predict the distributions of each vector and host species. We then compared the predicted distribution of each
species with cover of each land class.

Results: Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina
and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The
Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60 % tree cover)
whereas the Dirus Complex was predicted to occur in areas with 10–100 % tree cover as well as vegetation mosaics and
cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis
was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas.

Conclusions: The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found.
This is of most significance in the northern part of its range where members of the Dirus Complex are the main
P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results
support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber
concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus
Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself
using infection data is required to explore this further. The species distributions generated here can now be included
in future analyses of P. knowlesi infection risk.
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Background
Approximately one million malaria cases were reported
by countries in the Indochinese Peninsula, Malay Peninsula
and insular southeast Asia in 2013, and the Plasmodium
knowlesi parasite was the most common cause of malaria
in Malaysia [1]. It is a zoonotic disease that can cause se-
vere symptoms and fatalities in humans [2], and is trans-
mitted among macaques and to humans by anopheline
mosquitoes [3]. Outside Malaysia, human cases have been
reported from a small number of dispersed locations [3, 4]
but the distribution of P. knowlesi in these countries is
largely unknown. There are far more reports of macaque
and mosquito populations, which provides an opportunity
to use these distributions to refine estimates of the geo-
graphical distribution of knowlesi malaria.
A World Health Organization consultation concluded

that this disease is a public health problem that is limited
to population groups that live, work in or visit forested
areas [5] and it is commonly cited as such [6–10]. No
study has, however, analysed the relationship between for-
est cover and the distributions of the primary P. knowlesi
host or vector species, across the ranges of these species,
limiting our ability to understand the risk factors for dis-
ease transmission.
Plasmodium knowlesi parasites regularly infect Macaca

fascicularis and M. nemestrina macaques [11, 12] and de-
tailed molecular studies have shown that recent human
infections in Malaysia match two distinct populations of
parasites found in M. nemestrina and M. fascicularis re-
spectively [8, 13]. Macaca leonina is a close relative of M.
nemestrina that has only recently been classified as a
separate species [14, 15]. The distribution of M. leonina
extends further north than either M. fascicularis or M.
nemestrina to areas of north Myanmar where P. knowlesi
cases have been found [16, 17]. For this reason, M. leonina
has been included with M. nemestrina on previous maps
of P. knowlesi risk that display overlapping ranges of the
species involved [3] and is considered a putative host
species.
There is good evidence that P. knowlesi is transmitted

to humans by a number of mosquito species from the
Leucosphyrus Group: Anopheles dirus [18] and An. cracens
[19] in the Dirus Complex, and An. latens [20], An. balaba-
censis [21] and An. introlatus [22] from the Leucosphyrus
Complex. Earlier studies did not identify mosquitoes to the
species level using molecular methods but they add to the
body of evidence that members of the Leucosphyrus Group
transmit this malaria from monkeys to humans [23]. In-
deed, no mosquito species outside the Leucosphyrus
Group has so far been implicated by studies conducted
in the field.
Previous approaches that superimposed potential host

and vector species range maps [3, 4] do not provide
insight into the variation in P. knowlesi infection risk

within these ranges and do not provide an evidence base
for the potential link between forest cover and disease
risk. We used species distribution models to investigate
the distributions of each of the known and putative
hosts and vectors of P. knowlesi parasites, and to explore
their relationships with forest cover, forest use, and other
rarely considered but potentially influential environmental
variables. Our aim was to produce predicted species distri-
butions, based on empirical data, that could be used in
future studies, combined with what data there is on P.
knowlesi infections at different locations, to predict geo-
graphical variation in disease risk in future studies.

Methods
Summary
We used a boosted regression tree (BRT) species distri-
bution model, constructed in R, to examine the relation-
ship between the occurrence of each macaque and
mosquito species and 19 environmental covariates, and
to predict the relative probability of occurrence for each
species at every square (pixel) in a 5 × 5 km grid. The
data used by the model were (i) occurrence data points
for each species; (ii) survey location datasets that de-
scribed the sampling bias in the occurrence data; and
(iii) a suite of environmental variables. During the study
period (1990 to 2014), deforestation has led to dramatic
changes in forest cover so we constructed annual data
layers for each land cover class. Finally, the model out-
puts on the islands of the archipelago were masked by a
range defined for each species.

Species occurrence data collation
For each species investigated, we undertook a wide litera-
ture search for reports of occurrence and then applied
inclusion criteria to ensure the data quality met our mini-
mum standards.
For each macaque species, we conducted a Web of

Science bibliography search using the species name
(including common names: long tailed macaque, crab
eating macaque, kra macaque, pig tailed macaque). We
searched the resulting articles for (i) reports of the species
found at specific locations and (ii) citations for other
sources of occurrence data. We also wrote to the study
authors to request unpublished datasets. Finally, we asked
conservation organisations working in the region for their
unpublished data.
Inclusion criteria for the macaque occurrence data were

(i) reports from a specified date on or after 1 January 1990
and ideally on or after 1 January 1999 to match, as closely
as possible, the year ranges for the covariate data; (ii) re-
ports from a specific location representing an area not
greater than 5 × 5 km; (iii) individual species identified; and
(iv) reports of free-living macaques not captive animals.
Aggregated data from multiple time periods or multiple
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sites were disaggregated to single time periods and sites.
Duplicate records of the same species found at the same
site within the same year were removed, with a single rec-
ord for that year retained, in order to mitigate against over-
sampling at specific sites. An annual time period was
chosen to match the land cover data, which were generated
for every year.
Coordinates provided by data contributors were con-

verted into decimal degrees. Sites without coordinates
from the data provider were assigned coordinates by
identifying the site in at least two online gazetteers
(GeoNames, Google Earth, Google Maps, iTouchMap
and/or OpenStreetMap).
The mosquito data collation mirrored the process for

macaque data collation above and has been reported
previously [24]. Low volumes of data were available for
most species so we also collated data for the relevant
species complexes (the Leucosphyrus Complex and the
Dirus Complex). The previous mosquito data collec-
tion was extended to include reports published up to
November 2015.
In total, we collated 1,116 occurrence records between

1999 and 2014 for M. fascicularis and 1,025 for M.
nemestrina. The inclusion criteria that locations should
not be greater than 5 × 5 km was relaxed for M. leonina
and we collated 450 records from 1992 to 2014, of which
33 were linked to locations representing areas > 25 km2.
The borders of each area > 25 km2 were defined in
ArcMap.
We collated 545 records for the Dirus Complex (in-

cluding 107 for An. dirus and 19 for An. cracens) and
49 for the Leucosphyrus Complex (including 21 for An.
balabacensis, 11 for An. latens, and 9 for An. introlatus)
from 1982 to 2013.
Collectively the surveys used did not sample a repre-

sentative set of environments at the same frequency that
each environment occurs within the study area, for ex-
ample camera traps used by conservationists are rarely
set up in urban areas or impenetrable jungle. Our aim
when collating the background datasets was to account
for as much of the sampling bias in the presence data as
possible by selecting datasets that used the same methods
(e.g. camera traps and direct observations from transect
walks) to record similar species (primates and other mam-
mals). The surveys that provided presence data for the
macaque and anopheline species frequently reported more
than one species and met our criteria for background data
of using the same methods to record similar species.
We obtained the locations of all mammal surveys held by

the Global Biodiversity Information Facility (www.gbif.org)
that were conducted on a specified date from 1990 on-
wards, at a specified location and within our area of study.
We also used the records from the other two macaque spe-
cies to generate additional background data for the species

being modelled. Each background dataset was restricted to
the range (plus a 300 km buffer to allow for uncertainty in
the ranges) of the species being modelled.
To account for the sampling bias in the anopheline data-

sets, we used a database of all published malaria vector sur-
veys held by the Malaria Atlas Project (www.map.ox.ac.uk/
explorer). Each background dataset was restricted to the
range (plus a 300 km buffer to allow for uncertainty in the
ranges) of the species, complex or group being modelled.
Table 1 provides the total number of presence and

background data points available for each macaque and
mosquito species and complex. The full distributions of
these datasets, in space and time, are shown in Additional
file 1.

Covariate data surface construction
Nineteen environmental and human population variables
were tested in the species distribution models and are
summarised in Additional file 2. The process of con-
structing environmental data layers from MODIS satel-
lite data has been described previously [25] and was
extended from Africa to the rest of the world, covering
the period 2000 to 2014. In addition, to include season-
ality in temperature and moisture/vegetation indices, the
standard deviation of the monthly values at each loca-
tion was calculated. Of the 19 land cover classes, six that
were not relevant to the study area were excluded. For-
est data layers were constructed separately (see below)
and the urban class was excluded because we used human
population density data, leaving a total of seven classes
(open shrubland, woody savannah, savannah, grassland,
permanent wetlands, cropland, and cropland-natural vege-
tation mosaic).

Annual intact and disturbed forest data surface
construction
Total forest cover was defined annually from 2001 to
2012 by combining the five forest classes available in the
International Geosphere and Biosphere Programme (IGBP)
land cover dataset produced using MODIS satellite im-
agery (MCD12Q1) [26]. We divided the aggregated forest
cover data into two sub-classes defined previously by forest

Table 1 Number of data points used in each model

No. presence points No. background points

M. fascicularis 1, 116 2, 267

M. nemestrina 1, 025 608

M. leonina 450 1, 041

An dirus 107 447

Dirus Complex 545 881

Leuco. Complex 49 913

Leuco. Group 615 1, 802
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landscape researchers [27]; intact forest and disturbed
forest. The Intact Forest Landscape (IFL) map for the year
2000 is a publicly available vector dataset encompassing
areas defined as ‘an unbroken expanse of forest showing
no signs of human activity and having an area of at least
500 km2’ [27], which we converted to a 500 m spatial reso-
lution raster dataset. The IGBP forest cover data for 2001
was divided between the two sub-classes using the IFL
dataset. The IGBP forest cover data for subsequent years
was then used to reclassify any cells in the preceding year
that had been considered forest (intact or disturbed) to
non-forest, if the corresponding IGBP cell showed a transi-
tion from forested to non-forested land cover from one
year to the next. If the IGBP data showed a transition from
non-forest to forest, the cell was defined as disturbed forest
in our data layers based on the assumption that new forest
regrowth would not meet the criteria for intact forest
within this time period. The annual products were pro-
duced sequentially, with results from the preceding year
used to create those for the subsequent year, thus pro-
ducing output that tracked the decline in forest cover
and any areas of regrowth. Once produced, the 500 m
categorical results for each year were converted to frac-
tional (i.e. continuous) products at a 5 km resolution, with
values ranging from 0.0 (no forest cover) to 1.0 (complete
forest cover) for the proportion of each 5 × 5 km classified
as each forest type. Further details on the construction
and validation of the forest covariate data surfaces are pro-
vided in Additional file 2.

Model
The boosted regression trees method used here is a
variant of the model used in previous analyses of malaria
vector species [24] and diseases such as dengue [28].
Boosted regression tree modelling combines both regres-
sion trees (which build a set of decision rules on the pre-
dictor variables by portioning the data into successively
smaller groups with binary splits) and boosting (which
selects sets of trees that minimise the loss of function)
to best capture the variables that define the distribution
of the input data [29–31]. The core setup used in the
current study has been described previously [28]. The
changes made to the method for this study allowed
temporal changes in land cover to be incorporated and
improved the way absence data and sampling bias were
handled. Our methods for handling polygon data also
varied from those used previously.
The previous approaches [24, 28] used synoptic covariate

values that covered a period of several years. In this study,
we incorporated temporal covariate data for the land cover
classes so that the year of occurrence was taken into ac-
count. We were able to construct covariate data layers for
each year from 2001 to 2012 but the species data available
for this period did not cover all of the geographical regions

for which we had data. To test the impact of using species
data that could not be matched to the corresponding an-
nual land cover layers we constructed two test datasets for
M. leonina and the Dirus Complex for the time period
2001 to 2012 only. We ran the model as described below
twice on each dataset; once linking the species data to an-
nual covariate layers and once linking the species data to
the 2012 covariate layers only. The results provided in
Additional file 3 show that the outputs from the two model
versions were similar but the version using annual covari-
ates performed slightly better. We therefore used the full
dataset for the final model runs, including data outside the
2001 to 2012 year range, in order to maximise the spread
of species data used, and we linked species data from 2001
to 2012 to covariate values for the relevant year in order to
improve the predictions where possible. For all occurrences
prior to 2001, covariate values for 2001 were used, and for
any data collected after 2012, covariate values for 2012
were used. Model predictions were made to the most con-
temporary covariate data available.
The boosted regression trees method requires both

presence and absence data. Pseudo-absence data, also
known as background data, are generated when true ab-
sence data is not available. The vast majority of species
occurrence datasets are subject to spatial bias, for ex-
ample, areas near roads and paths may be more likely to
be surveyed than other sites. If unaccounted for, this sur-
vey bias can translate into environmental bias in the fitted
model. One approach for coping with biased occurrence
data is to select background data that reflect the same
survey bias as the occurrence data. The resulting model
should identify suitable environments for the species
within the sampled space, rather than just areas that are
more heavily sampled. This approach does not eliminate
sampling bias issues entirely but improved model per-
formance has been demonstrated when compared to the
use of randomly selected background data [32]. For the
work presented here, mammal and malaria vector occur-
rence records from within the study area were used as
pseudo-absence data for the macaque and vector models,
respectively. These background datasets were chosen be-
cause the sampling methods were the same as those used
for the target species.
For each species, we fitted 120 submodels each trained

to a randomly selected bootstrap of the presence/back-
ground dataset. Each bootstrap contained a minimum of
five presence and five background points. To account
for uncertainty in the geographic location of occurrences
linked to polygon locations > 25 km2 in the M. leonina
dataset, one 5 × 5 km pixel within each polygon was
randomly selected for each bootstrap. Each of the sub-
models generated a predicted value for the relative
probability of species occurrence at every 5 × 5 km pixel
and together the submodels generated a distribution of
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predicted values for every pixel. We generated maps dis-
playing the mean, 0.025 quantile and 0.975 quantile
values from these distributions for each pixel.
To evaluate the ensemble’s predictive performance, we

calculated, for each submodel, the area under the receiver
operator curve (AUC), i.e. the area under a plot of the true
positive rate versus the false positive rate, reflecting the
ability to discriminate between presence and background
records, whilst marginalising the arbitrary choice of a clas-
sification threshold [33]. For each submodel, we reported
the mean AUC under fivefold cross-validation using a
pairwise distance sampling procedure to remove spatial
sorting bias in the model validation [34]. We then com-
bined these submodel validation statistics to obtain an
overall estimate of predictive performance in the ensem-
ble, and uncertainty in this estimate.
There were insufficient presence data for An. cracens,

An. balabacensis, An. latens, or An. introlatus to model
these species individually so members of the Dirus and
Leucosphyrus Complexes were modelled collectively to
predict the relative probability of one or more of the
species within a complex occurring.

Covariate density plots
To illustrate the relationships between the coverage of
each land cover class and predicted species occurrence,
we plotted the relative density of pixels at each percentage
coverage for all pixels where the relative probability of
species occurrence was greater than 0.75. This threshold
was selected in order to identify pixels with a high prob-
ability of occurrence rather than simply those with a rela-
tive probability greater than 50 %. The density values were
calculated from the ratio of the number of pixels where
the relative probability of species occurrence was greater
than 0.75 to the total number of pixels in the study area.

Masks
The model outputs for each species were restricted to
the islands within its known range, using the range maps
developed for this project. For the macaque species,
range maps were obtained from the International Union
for the Conservation of Nature [35]. These ranges did
not incorporate all new data or introduced populations.
We therefore used our occurrence dataset to adjust the
range for each species by either dragging the range out
to encompass new reports next to the existing range or
by identifying the borders of any confirmed population
that was not contiguous with the existing range. For this
exercise, data did not need to meet the criteria of repre-
senting an area < 25 km2. For the mosquito species/
complexes, we used range maps previously published by
three groups [24, 36, 37] and updated these in the same
way as the macaque ranges. In places where the three

ranges differed for a particular species, we selected the
broadest of the available options.

Results
Macaque and mosquito distributions
The mean model outputs, masked out on islands out-
side the species range, were used to generate predicted
species distribution maps (Figs. 1 and 2). The AUC
values ± standard error for the predicted macaques dis-
tributions were 0.858 ± 0.001 for the M. fascicularis
map, 0.821 ± 0.003 for the M. nemestrina map and 0.830 ±
0.002 for the M. leonina map. The AUC values ± standard
error for the predicted mosquito distributions were 0.860 ±
0.005 for the An. dirus map, 0.885 ± 0.002 for the Dirus
Complex map, 0.842 ± 0.009 for the Leucophyrus Complex
map and 0.883 ± 0.001 for the Leucophyrus Group map.
The Leucosphyrus Complex predictions should be inter-
preted with caution because the data volume for this
Complex was low and the data was sparse. The model did
not predict many areas with a high probability of occur-
rence outside the current macaque ranges, indicating that
each species has largely realised its predicted niche,
excluding islands that have not yet been populated
(Fig. 1).
The 0.025 and 0.975 quantile from the model ensemble,

and the top predictors for each species together with
values for their relative influence on the model, are pro-
vided in Additional files 4 and 5.
Density plots illustrating the ratio of proportional land

cover in areas with high predicted probability of occur-
rence (predictions of 0.75 and above) to proportional
land cover in all areas are given in Additional file 6. If all
land cover proportions (for example high, low and no
coverage of grassland) were equally likely to be suitable
(a null distribution), each of these density plots would be
flat. High or low regions of the density plots therefore
indicate proportional land cover values which are pre-
dicted to be more or less suitable for occurrence of the
species in question. These plots should not be inter-
preted as providing robust evidence for any specific rela-
tionship between each land cover class and species
presence, in part because each plot is influenced by the
relationships between species occurrence and all of the
other covariates that went into the model for the locations
where we had data. The purpose of these plots is solely to
provide an extra visualisation of the predicted species dis-
tribution results and supplement the information that can
be visualised directly on the maps in Figs. 1 and 2.

Data availability
All data used and generated by the project are publicly
available. The vector occurrence data used in our models
are available from http://www.map.ox.ac.uk/explorer/#Enti
tyPlace:Anopheline. The macaque occurrence datasets used
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in each model are provided in Additional files 7, 8 and 9.
The GeoTIFF files containing mean model outputs as dis-
played in the distribution maps are provided in Additional
files 10, 11, 12, 13, 14, 15 and 16. The model code gener-
ated is available on an open source basis from https://
github.com/SEEG-Oxford/seegSDM.

Discussion
Forest cover is shrinking in southeast Asia and the loss
of natural or intact forest is in part due to conversion to
degraded or logged areas and plantations (included in
the disturbed forest category in this study) [38]. Further-
more, this trend is expected to continue [39]. This study
is the first to predict the full distributions of knowlesi
malaria host and vector species by modelling these spe-
cies across their ranges using environmental data sur-
faces that track changes in land cover. The predicted
distributions generated are not solely restricted to for-
ested areas and any disease risk in non-forested areas
has the potential to dramatically increase estimates of
the population at potential risk of knowlesi malaria
within this densely populated region [5].
The species distributions were generated using envir-

onmental covariates but the relationship between species
occurrence and these covariates may vary in time and

space. One advantage of the BRT approach is its ability
to fit a single overall model to multiple distinct patterns
within the data. This flexible nonparametric statistical
model is better able to simultaneously model multiple
environmental relationships than more traditional ap-
proaches [29]. The cost of this flexibility and focus on
predictive power is that it complicates inference, thus, it
is not possible to identify causal relationships between
the environmental covariates and the species modelled.
For the vector species, data scarcity meant we had to
pool data from multiple species and again BRT’s ability
to encompass different relationships within a pooled
dataset helps to overcome some of the issues of model-
ling multiple species together. The model is still limited
as it is only able to model relationships for the combina-
tions of covariates found within the field data provided
to the model.
The model is also limited by the set of covariates used.

These do not capture all potential sources of variation
that may influence the distributions of these species in
some or all parts of their ranges. For example, forest
edge effects were not incorporated in our study. Previ-
ously the booted macaque, M. ochreata, has been shown
to be more abundant near forest edges at two sites in
Sulawesi [40], however, a study of tiger prey, including

Fig. 1 Ranges and predicted distributions of the macaque species. The three maps on the left show the current range of each macaque species
and the three maps on the right show the predicted relative probability of occurrence at every 5 × 5 km pixel within the study area on a scale of
0 to 1.0
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M. nemestrina, on Sumatra found that edge effects asso-
ciated with national park boundaries were not significant
once human population density was considered [41].
The potential predictors provided to the model are

also limited by the fact that each land class encompasses
variation in that habitat; most noticeably the disturbed
forest class includes natural forest with evidence of human
disturbance, or less than 500 km2 in area, and established
palm and rubber plantations. Our aim was to model each
species across its entire range using region-wide covariate
datasets rather than more detailed but locally-restricted
data. Furthermore, our approach did not incorporate fac-
tors that may be important at finer resolutions than the
5 km used here [42]. Nevertheless, the models performed
reasonably well using the covariate data that we con-
structed for the region as a whole, at a 5 km resolution,
and gave AUC values of 0.82 and above. The answers to
more detailed questions about the influence of individual
factors on host and vector populations require more

detailed studies. The distributions presented here provide
a good estimate of the full distributions of the species im-
portant to P. knowlesi transmission across their ranges.
Earlier studies of M. nemestrina were more detailed

but also more geographically restricted. In Indonesian
Borneo, M. nemestrina was found in intact and partially
degraded or burned forest but was absent from completely
deforested areas [43]. On Sumatra, M. nemestrina densities
were higher in areas of low human population density [41]
and this species was less common in plantations compared
to M. fascicularis, although it was found [44]. Macaca
nemestrina raids rice crops in Sumatra, most frequently on
farms close to the forest edge [45]. Of the macaque species
studied here, our model predicted a high relative probability
of M. nemestrina presence in the smallest number of
land cover classes, and rarely predicted occurrence in
non-forested areas. This finding and those of other
studies support the hypothesis that this species will be
negatively impacted by conversion of forested areas to

Fig. 2 Ranges and predicted distributions of the mosquito species, complexes and group. The four maps on the left show the current range of each
mosquito species, complex or group, and the four maps on the right show the predicted relative probability of occurrence at every 5 × 5 km pixel
within the study area on a scale of 0 to 1.0
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non-forest habitats but conversion of intact forest to
disturbed forest will allow populations to remain. The
latter conversion will, however, bring humans into the
vicinity of these macaque populations where they had
previously been separated.
Our model predicted that the M. fascicularis and M.

leonina distributions encompass a wider range of habi-
tats than the M. nemestrina distribution, and this is par-
ticularly apparent for the M. fascicularis distribution. A
number of studies have measured the habitat preferences
of M. fascicularis within restricted parts of its range but
none have considered the full distribution of this species.
In Malaysian Borneo, studies found that M. fascicularis
populations were initially negatively impacted by logging
activities but their local abundance was higher in areas
that had been logged ten years previously than in
unlogged forest [46]. In Vietnam, M. fascicularis was
found in public parks and temples as well as mangroves,
river banks and primary, disturbed and secondary forests
[47]. On Sumatra, M. fascicularis was found in plantations
more commonly than M. nemestrina [44]. In Thailand, M.
fascicularis habitats have changed from natural forests to
temples and parks over the last 30 years [48] and groups
are found in suburban Bangkok, the Thai capital [49]. This
species will also freely enter suburban areas of Selangor
State, Malaysia [50]. In Singapore, M. fascicularis is found
at forest perimeters and in forest fragments, where these
macaques are habituated to human presence and will
leave forest areas for urban habitats [51]. Our results and
these previous findings strongly suggest that M. fascicu-
laris populations are able to occupy a wide range of
habitats. Importantly, the distribution of this species
encompasses many locations close to human habitation
(urban areas) or activity (disturbed forests, orchards,
croplands, etc).
There are fewer studies of M. leonina habitat prefer-

ences. In recent surveys, M. leonina monkeys were found
in a range of habitats in Laos from river areas to inter-
mediate plains to dry hilly forest [52]. When the habitat
preference of this species was measured within a Laos re-
serve, it was associated with proximity to village areas
(average 6 km) as well as with evergreen and deciduous
forest cover, lower elevations and higher temperatures
[53]. Macaca leonina has also been found to move be-
tween primary and secondary forest in a Thai reserve [54].
The evidence available, and our own results, suggests that
this species occurs in deforested areas where human ac-
tivity occurs although, like M. nemestrina, this species
was not associated with urban areas.
The question of whether these latter two macaque

species occur in northern Myanmar is of particular rele-
vance because human cases of P. knowlesi malaria have
been found in people living in Shan State near the
border with Yunnan Province, China [16, 17]. If the

current ranges used here are accurate then, of the species
we mapped for this study, only M. leonina is present in
northeast Myanmar. Records of macaques in Myanmar
are, however, incomplete and may be out of date [55]
although a recent survey close to the Yunnan border in
Kachin State (to the north of Shan State) found M. leonina
monkeys but not M. fascicularis [56]. The M. fascicularis
range extends at least as far north as central Myanmar but
our results predict that the habitats further northeast are
unsuitable for this species (Fig. 1). Further surveys of this
region are necessary to confirm the full list of species
present and whether they are infected with P. knowlesi.
Sulawesi is not in the natural range of the three ma-

caque species studied here although related species are
found on the island [57]. Macaca fascicularis and M.
nemestrina monkeys are kept as pets on Sulawesi [58]
and there is an unsubstantiated report of P. knowlesi
infecting a macaque here [59]. For these reasons we have
shown the model predictions for these species on Sulawesi
but this area of the map should be interpreted as showing
suitable environments for these species should they estab-
lish feral populations.
The Leucosphyrus Complex of mosquitoes was pre-

dicted to occur in areas with high coverage of disturbed
forest but lacking intact forest cover, although the sparse
data and low data volumes for this Complex mean these
predictions need to be interpreted with caution. This
Complex is responsible for P. knowlesi transmission in
the region where knowlesi malaria is believed to be most
common, Malaysian Borneo, and where deforestation
(the loss of intact forest) is occurring [21, 60]. Notifica-
tions of knowlesi malaria cases increased in Malaysian
Borneo between 1992 and 2011 [61] and our results in-
dicate the conversion of intact forest to disturbed forest,
and the resulting impact on the probability of encoun-
tering members of the Leucosphyrus Complex, could be
a factor here. One study in the northern part of Sabah in
Malaysian Borneo recently found an association between
two forest variables, forest loss and total cover within
2 km of a village, and the estimated incidence of knowlesi
malaria at the village level in the two districts studied but
they did not distinguish intact and disturbed forest [62].
The small number of previous studies of the Leucosphyrus
Complex all focussed on measuring the characteristics of
relevance to vectorial capacity rather than relationships
with environmental factors. These studies were conducted
in restricted geographical areas and did not explicitly
measure environmental variables, although sites were
classified into types. Anopheles balabacensis in an area of
Sabah was more abundant in a village site than the forest
site and farming site surveyed, but P. knowlesi infection
rates were lowest in the village [21]. Anopheles latens
human biting rates in Sarawak, Malaysia were higher at
a fruit tree farm on the forest fringe and a forest site
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compared to a longhouse site, and P. knowlesi sporozo-
ite infected individuals were only found at the fruit tree
and forest sites [60]. Ours is the first study to investi-
gate the distribution of the Leucosphyrus Complex,
generally considered to be a forest species [24, 36, 37]
and to have predicted occurrence in areas with dis-
turbed forest cover.
Two previous studies have considered the relation-

ships between the Dirus Complex and environmental
factors. The research presented here builds on an earlier
project that predicted distributions for all primary hu-
man malaria vectors in the region using an older version
of the field dataset used here, and similar methods [24].
In the current study we developed the modelling tech-
niques further to handle sampling bias, we extended the
range of covariates tested and we incorporated data on
temporal changes to land cover since 2001. We found
similar relationships with environmental factors to the
earlier work and observed a closer match to the known
range of the Dirus Complex. An independent study used
a different approach to model both the potential niche
and the current distribution or realised niche of this
Complex [63]. They used temperature and rainfall to de-
fine the fundamental niche, and land cover (specifically
forest cover in 2005) to model the realised niche or
current distribution. Our results did not predict Dirus
Complex occurrence exclusively in forested areas but
the outputs from the two studies, our predicted distribu-
tion and their realised niche map, show similar results.
More detailed but geographically restricted studies have
considered differences in abundance in different habitat
types at a small number of sites but have not explicitly
analysed the relationships with environmental variables.
The An. dirus biting and infection rates did not differ
significantly between a forest site and a forest fringe site
in Khanh Hoa Province, Vietnam [64], whereas An. cracens
was more abundant and had a higher human biting rate at
an orchard site compared to a forest edge and village site
in Pahang State, Malaysia [19]. Our study took data from a
much larger number of sites and used quantified environ-
mental variables, but is restricted to species occurrence.
For all potential vector species, and particularly the

members of the Leucosphyrus Complex implicated as P.
knowlesi vectors, more data is needed to define their dis-
tributions with confidence. Large-scale systematic sam-
pling of a range of habitats across the region is urgently
needed to address this important gap in our understanding
of P. knowlesi infection risk.

Conclusions
Together our results for the macaque hosts and the mos-
quito vectors of P. knowlesi malaria suggest that the rela-
tive probability of host macaque species and members of
the Leucosphyrus Complex occurring in disturbed forest

areas, for example, plantations or timber concessions, and
vegetation mosaics, will mean these species can co-exist
close to human activity. This finding is of most signifi-
cance in the southern part of our study area (Malaysia,
Indonesia, Singapore, Brunei and part of the Philippines)
where members of this Complex are the main P. knowlesi
vectors. The predicted distribution of the long-tailed ma-
caque, M. fascicularis, encompassed many more types of
human-occupied habitat. This is of most significance in the
northern part of its range and our study area (Myanmar,
Thailand, Laos, Cambodia and Vietnam) because members
of the Dirus Complex are the main P. knowlesi vectors here
and our model predicts occurrence of these species in
areas of open canopy cover (savannah), vegetation mosaics
and cropland as well as closed canopy forest.
Characterising the distribution of all component species

is an important first step in understanding the distribution
of a vector-borne, zoonotic disease when human infection
data is lacking. The maps generated here will help identify
areas where there may be a P. knowlesi disease risk but
further information is needed to extrapolate directly from
these maps to an index of risk [42]. The next stage of this
work, therefore, needs to consider the relationship be-
tween P. knowlesi infections and a range of risk factors
including the fine scale species distributions presented
here as well as geographical, environmental and socioeco-
nomic factors. Using a similar modelling framework, the
P. knowlesi reservoir and vector maps can be used as ex-
planatory variables to test their ability to predict spatial
variation in risk of human P. knowlesi infections in areas
where human disease data is available. The resulting
model could then be used to predict human disease risk
in areas where both reservoirs and competent vectors are
likely to be present but human disease data is scarce or
absent. Only then can we consider estimating the popula-
tion at risk across the region.

Additional files

Additional file 1: Distributions of the model input data in space and
time. The spatial distributions of the species occurrence data and
background data are shown on a series of maps and their temporal
distributions are shown by a series of histograms. (DOCX 1584 kb)

Additional file 2: Environmental variables used in the species distribution
models and construction of the forest cover layers. Details of the covariate
data used are provided together with their source details. The construction
and validation of the intact and disturbed forest layers is described in detail.
(DOCX 27 kb)

Additional file 3: Investigating the impact of using annual land cover data.
The model was run using identical datasets and either 1) year-matched land
cover data or 2) 2012 land cover data. The resulting distributions are shown
with the AUC ± standard error, and the top predictors with their relative
influences. A map showing the difference between the two resulting
distributions is also provided. (DOCX 2977 kb)

Additional file 4: The 0.025 and 0.975 quantile model predictions, and
the top predictors, for each macaque species. For each macaque species
the 0.025 and 0.975 quantile model outputs, masked out on islands outside
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each species range, are provided with the mean AUC (± standard error) and
the relative influence of the top predictors for that species. (DOCX 1183 kb)

Additional file 5: The 0.025 and 0.975 quantile model predictions, and
the top predictors, for each mosquito model. For each mosquito species,
complex or group, the 0.025 and 0.975 quantile model outputs, masked
out on islands outside each species or complex range, are provided with
the mean AUC (± standard error) and the relative influence of the top
predictors for that model. (DOCX 1331 kb)

Additional file 6: Proportional land cover in areas with high predicted
probability of species occurrence. Plots showing the relative density of pixels
at each percentage land class coverage for all pixels where the probability of
species occurrence was greater than 0.75, for each species. (DOCX 795 kb)

Additional file 7: Macaca fascicularis data. Each record of M. fascicularis
occurrence is provided with a location and date. Duplicate records within
a calendar year have been removed. Locations are classed as points
(defined as <25 km2) or polygons (defined as >25 km2). (XLSX 322 kb)

Additional file 8: Macaca nemestrina data. Each record of M. nemestrina
occurrence is provided with a location and date. Duplicate records within
a calendar year have been removed. Locations are classed as points
(defined as <25 km2) or polygons (defined as >25 km2). (XLSX 130 kb)

Additional file 9: Macaca leonina data. Each record of M. leonina
occurrence is provided with a location and date. Duplicate records within
a calendar year have been removed. Locations are classed as points
(defined as <25 km2) or polygons (defined as >25 km2). (XLSX 63 kb)

Additional file 10: Relative probability of Macaca fascicularis occurrence.
A GeoTIFF raster data layer containing a predicted value (the mean
model output) for every 5×5km pixel within SE Asia excluding islands
outside the species range. This file can be opened in GIS software (e.g.
QGIS, ArcMap, etc) or using the ‘raster’ R package. (TIF 4459 kb)

Additional file 11: Relative probability of Macaca nemestrina occurrence.
A GeoTIFF raster data layer containing a predicted value (the mean model
output) for every 5×5km pixel within SE Asia excluding islands outside the
species range. This file can be opened in GIS software (e.g. QGIS, ArcMap,
etc) or using the ‘raster’ R package. (TIF 4090 kb)

Additional file 12: Relative probability of Macaca leonina occurrence. A
GeoTIFF raster data layer containing a predicted value (the mean model
output) for every 5×5km pixel within SE Asia excluding islands outside
the species range. This file can be opened in GIS software (e.g. QGIS,
ArcMap, etc) or using the ‘raster’ R package. (TIF 3459 kb)

Additional file 13: Relative probability of Anopheles dirus occurrence. A
GeoTIFF raster data layer containing a predicted value (the mean model
output) for every 5×5km pixel within SE Asia excluding islands outside
the species range. This file can be opened in GIS software (e.g. QGIS,
ArcMap, etc) or using the ‘raster’ R package. (TIF 3461 kb)

Additional file 14: Relative probability of a member of the Dirus Complex
occurring. A GeoTIFF raster data layer containing a predicted value (the mean
model output) for every 5×5km pixel within SE Asia excluding islands outside
the complex range. This file can be opened in GIS software (e.g. QGIS, ArcMap,
etc) or using the ‘raster’ R package. (TIF 3770 kb)

Additional file 15: Relative probability of a member of the Leucosphyrus
Complex occurring. A GeoTIFF raster data layer containing a predicted value
(the mean model output) for every 5×5km pixel within SE Asia excluding
islands outside the complex range. This file can be opened in GIS software
(e.g. QGIS, ArcMap, etc) or using the ‘raster’ R package. (TIF 4006 kb)

Additional file 16: Relative probability of a member of the Leucosphyrus
Group occurring. A GeoTIFF raster data layer containing a predicted value
(the mean model output) for every 5×5km pixel within SE Asia excluding
islands outside the group range. This file can be opened in GIS software
(e.g. QGIS, ArcMap, etc) or using the ‘raster’ R package. (TIF 4524 kb)
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