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Abstract: Segment-level image fusion involves segmenting a higher spatial resolution 

(HSR) image to derive boundaries of land cover objects, and then extracting additional 

descriptors of image segments (polygons) from a lower spatial resolution (LSR) image.  

In past research, an unweighted segment-level fusion (USF) approach, which extracts 

information from a resampled LSR image, resulted in more accurate land cover classification 

than the use of HSR imagery alone. However, simply fusing the LSR image with segment 

polygons may lead to significant errors due to the high level of noise in pixels along the 

segment boundaries (i.e., pixels containing multiple land cover types). To mitigate this, a 

spatially-weighted segment-level fusion (SWSF) method was proposed for extracting 

descriptors (mean spectral values) of segments from LSR images. SWSF reduces the weights 

of LSR pixels located on or near segment boundaries to reduce errors in the fusion process. 

Compared to the USF approach, SWSF extracted more accurate spectral properties of land 

cover objects when the ratio of the LSR image resolution to the HSR image resolution was 

greater than 2:1, and SWSF was also shown to increase classification accuracy. SWSF can 

be used to fuse any type of imagery at the segment level since it is insensitive to spectral 

differences between the LSR and HSR images (e.g., different spectral ranges of the images 

or different image acquisition dates). 
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1. Introduction 

Image segmentation has become a quite common pre-processing task in remote sensing. It involves 

sub-dividing an image into relatively homogeneous image regions (polygons) often referred to as  

“image segments” or “image objects” [1]. These image segments are then used for further image 

processing (e.g., object-based classification or regression tasks), either instead of [1–5] or in combination 

with [6–8] individual pixels. Descriptors of the pixels located within an image segment, such as the 

pixels’ reflectance values at different electromagnetic wavelengths, are typically used to derive several 

of the segment’s descriptors, such as its mean reflectance value at different electromagnetic wavelengths. 

Mean spectral values (e.g., radiance, reflectance, etc.) are probably the most commonly-used descriptors  

of image segments, although textural descriptors and geometric descriptors are also often used  

(e.g., [2,4,5,9]). In this study, the focus is on mean spectral values of image segments, derived from the 

pixels within each segment.  

Existing methods for calculating mean spectral values involve assigning equal weights to all pixels 

within a segment, as shown in Figure 1. However, for various reasons, it may be preferable to derive the 

mean spectral values using a weighted calculation method rather than by simply weighting all pixels 

equally. For example, as shown in Figure 2, in some cases a segment may intersect one or more pixels, 

causing the pixels to be located only partially within the segment (i.e., “partial sub-objects” of the 

segment). This often occurs if a higher spatial resolution (HSR) image is segmented and then the segment 

polygons are overlaid onto a lower spatial resolution (LSR) image to derive additional descriptors of the 

segments, such as higher spectral resolution [10,11] or higher temporal resolution information. 

Compared to pixel-based image fusion, which is relatively common nowadays in remote sensing [12], 

few studies have investigated fusion at the segment (polygon) level [10,13,14]. Here, for simplicity this 

procedure is referred to as segment-level fusion (also referred to as pixel/feature-level fusion in [11]). 

 

Figure 1. An image segment polygon (bold line) overlaid onto a grid of pixels with intensity 

values (a); the weights assigned to the pixels within the polygon (b); new values calculated by 

multiplying the pixel intensity values by their weights (c); the mean segment intensity value (d); 

calculated by dividing the sum of the values in (c) by the sum of the weights in (b). 

The most simple segment-level fusion approach is to resample the LSR image to match the HSR 

image that the segments were derived from, as shown in Figure 2, and then calculate the mean segment 

value from the resampled pixels. Here, this is referred to as the unweighted segment-level fusion (USF) 

approach, and it is implemented (or easy to implement) in commonly-used image segmentation software 

packages such as Trimble’s eCognition [15]. However, partial sub-objects are not ideal as segment 

descriptors because they are derived, in part, from locations outside of the segment they are describing. 

This makes them less accurate descriptors of the segment than pixels located completely within the 
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segment at their original spatial resolution (i.e., the “true sub-objects” of the segment). In addition to 

these problems related to partial sub-objects, true sub-objects of a segment may also contain unwanted 

noise from nearby areas, particularly the true sub-objects located adjacent to segment boundaries. This 

noise can be caused by many factors, including diffuse electromagnetic reflection from nearby land cover 

objects, motion blur, and/or geo-location errors in one or more of the images. Thus in many cases the 

pixels located on or near a segment’s boundary will be less accurate descriptors of the segment than the 

pixels located at more interior locations within the segment. So, while previous studies on segment-level 

fusion have used the USF approach, it may be preferable to instead adjust the weights of pixels based on 

their distance from segment boundaries (i.e., reduce the weight of resampled pixels located near segment 

boundaries) for mean segment value calculations.  

 

Figure 2. Image segment polygon (bold line) overlaid onto a grid of pixels with intensity 

values (a). The intersected pixels in (a) are the partial sub-objects of the segment, while the 

pixels located completely within the segment are the true sub-objects of the segment.  

The pixels from (a) are resampled to ½ of their original spatial resolution (e.g., from 30 m 

to 15 m resolution) using nearest neighbor resampling, and the intensity values of the 

resampled pixels are shown in (b). 

In this study, a spatially-weighted segment-level fusion (SWSF) approach is proposed to derive mean 

segment values from a LSR image. The proposed approach involves: (1) segmenting a HSR image;  

(2) resampling a LSR image to match the HSR image; (3) calculating a spatial weight for each resampled 

LSR pixel based on its Euclidean distance from the boundary of the segment it is located within; and  

(4) calculating the mean value of each segment based on the values of the resampled LSR pixels and 

their spatial weights. The proposed SWSF approach is compared with the traditional USF approach to 

determine which is more suitable for segment-level fusion of images with different spatial resolutions. 

We evaluated the performance of SWSF and USF using two case studies. The first involved extracting 

spectral values of urban land cover features in a very high (0.3 m) resolution image, and the second 

involved classifying a high (6.5 m) resolution image of a mixed agricultural/forested area. 
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2. Methods 

2.1. Case Study 1: Urban Area 

2.1.1. Study Area and Data 

In the first case study, a 0.3 m resolution color infrared (CIR) aerial orthoimage of an urban area in 

Deerfield Beach, USA (26.28°N, 80.08°W) was used to demonstrate the performance of the proposed 

SWSF approach under several different scenarios (i.e., several different LSR:HSR image ratios). The 

objective of this case study was to evaluate whether USF or SWSF could extract more accurate spectral 

values of urban land cover features in these scenarios. The study area image was 500 × 500 pixels and 

contained a variety of urban land cover, including buildings, vehicles (cars and boats), pavements with 

different reflectance properties, mixed vegetation, pools, and a canal. Pixel values were in digital number 

(DN) units ranging from 0 to 255 (8-bit data).  

A reference segmentation of the scene was obtained by manually digitizing the boundary of each land 

cover object in the image (415 polygons in total). The digitized vector polygons were rasterized to 0.3 m 

resolution to match the spatial resolution of the orthoimage. Often, automated methods, such as the 

multi-resolution segmentation algorithm [1] implemented in eCognition [15], are used for image 

segmentation, but manually-delineated polygons are also used, particularly when very high accuracy is 

desired (e.g., for delineating legal property boundaries, important vegetation types, etc.). The proposed 

SWSF method can be applied to segments generated by either automated or manual image segmentation. 

A manual segmentation was used in this first case study (while an automated segmentation was used in 

the second case study).  

2.1.2. Extracting Mean Spectral Values of Segments from Simulated LSR Images 

For segment-level fusion, ideally the segment descriptors extracted from a LSR image should be 

equivalent to the segment descriptors that would be extracted if the LSR image were acquired at the 

same spatial resolution as the HSR. For example, if a 30 m resolution Landsat image is segmented and 

additional segment values are extracted from a 250 m resolution MODIS image, the segment descriptors 

extracted from the MODIS image should ideally be equivalent to the segment descriptors that would be 

extracted from a 30 m resolution MODIS image. Since it is impossible to test this property using real 

data, in this study the HSR image was instead degraded to several coarser spatial resolutions to generate 

simulated LSR images, and the mean segment values extracted from the HSR image were compared 

with the values extracted from the LSR images. Cubic convolution resampling [16], implemented in 

ESRI ArcGIS 10, was used to generate the simulated LSR images, and then the LSR images were 

resampled back to 0.3 m resolution by nearest neighbor resampling to match the HSR image. LSR images 

were generated at two times (0.6 m), three times (0.9 m), five times (1.5 m), and ten times (3.0 m)  

the spatial resolution of the HSR image to evaluate performance at various relative image resolutions 

(2:1, 3:1, 5:1, 10:1). Only the near infrared (NIR) band was used for this analysis since it was shown to 

be the most useful band for discriminating land cover objects in a previous study of the area [17], but the 

results should be similar for all spectral bands since only the spatial resolution of the imagery was altered. 

Figure 3 shows the reference image segments overlaid onto the NIR band at four different spatial resolutions. 
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Figure 3. Reference image segments (white lines) overlaid onto the near infrared image of 

the study area at 0.3 m (a), 0.6 m (b), 1.5 m (c), and 3.0 m (d) spatial resolutions. 

Since the objective in this experiment is to get the mean segment values extracted from the LSR 

image to closely match the mean values extracted from the HSR reference image, for SWSF to be 

effective it should produce values more similar to the HSR values than the USF approach. Mean Average 

Error (MAE) and Root Mean Square Error (RMSE) were both used to measure the differences between 

the mean segment values extracted from the HSR and LSR images. 

2.1.3. Spatially-Weighted Segment-Level Fusion (SWSF) 

As previously discussed, SWSF assigns spatial weights to the resampled (0.3 m) LSR pixels based 

on their Euclidean distance from segment boundaries. These spatial weights are then used to calculate 

the weighted mean (WM) value of each segment, given by: ܹܯ = ∑ ∑ୀଵ(ݕݓ) ୀଵݓ  (1)

where n is the number of pixels within the segment, wi is the spatial weight of pixel i, and yi is the pixel 

value of pixel i.  

For illustration simplicity, the distances were calculated, in pixel units, from the center of a pixel to 

the nearest polygon boundary, as shown in Figure 4. Nine different weighting schemes were tested for 

deriving spatial weights from these distance measurements, as the most effective weighting scheme may 

vary based on the spatial resolution of LSR image relative to that of the HSR image. In all nine weighting 

schemes, spatial weights increase linearly until a certain distance threshold is reached, after which they 

stop increasing. Assigning spatial weights of 0 to any pixels could cause some image segments to have 

WM values of 0 (e.g., if a segment consists of only partial sub-objects, which is not unusual), so all pixels 

have weights > 0 in the nine weighting schemes. For the first weighting scheme, W1, the spatial weights 

increase linearly until a distance of one pixel unit (i.e., 0.3 m) from the segment boundary is reached, as 

shown in Figure 5a. So, in this weighting scheme, only the pixels vertically, horizontally, or diagonally 

adjacent to segment boundaries are penalized with lower weights (i.e., weights < 1). The other eight 

weighting schemes—W2–W9—are calculated similarly to W1, but with different distance thresholds. 

As shown in Figure 5, for W2, W3, and W4, the spatial weights increase linearly until reaching a distance 

of 2, 3, or 4 pixel units (i.e., 0.6–1.2 m), respectively (weights for W5–W9 increase until 5–9 pixel units, 

respectively). Thus W9 penalizes the highest number of pixels and assigns the lowest weights to the 

penalized pixels, followed by W8, W7, and so on.  
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Figure 4. Euclidean distance, in pixel units, from each pixel’s center (gray point) to the 

nearest segment boundary (white line). 

  

Figure 5. Spatial weights calculated from the distance, in pixel units, between a pixel and the 

nearest segment boundary. Weighting schemes 1–4 (W1–W4) are shown in (a–d), respectively. 

2.2. Case Study 2: Mixed Agricultural/Forested Area 

2.2.1. Study Area and Data 

An orthorectified RapidEye satellite image of a mixed agricultural/forested area in Tham Khae, 

Thailand (16.60°N, 102.42°E) was used for the second case study. The objective of this case study was 

to determine if the SWSF approach could lead to higher image classification accuracy than the USF 

approach. Although RapidEye has a ground sampling distance of 6.5 m, orthorectified images are 

provided with a pixel size of 5 m. The study area image was 778 × 721 pixels, and contained a mixture 

of agricultural, forest, and built-up land. Pixel values were in digital number units (12-bits).  

An automated segmentation of the scene was obtained using the multi-resolution segmentation  

algorithm [1], and the segmentation parameter optimization method in [17].  
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2.2.2. Classifying a Simulated LSR Image 

As in Section 2.1.2, cubic convolution resampling was used to generate a simulated 30 m resolution 

LSR image. The resolution of this simulated image was between a 4:1 and 5:1 ratio compared to the 

original resolution of the image, and would be typical for fusion of RapidEye and Landsat (or similar) 

imagery. The 30 m LSR image was then resampled back to 5 m resolution by nearest neighbor 

resampling to match the pixel size of the HSR image.  

To compare the impacts of SWSF and USF on image classification, a relatively simple but common 

classification task was performed; a binary “vegetation”/“non-vegetation” classification of image 

segments using a normalized difference vegetation index (NDVI) threshold [18]. In practice, segment 

values derived from both the HSR and LSR images would typically be used for classification, but since 

the objective here was just to compare SWSF and USF, only the LSR-derived segment values (weighed 

and unweighted mean NDVI values, respectively) were used for classification. The HSR-derived image 

segment values were instead used to derive a baseline “vegetation”/“non-vegetation” map for 

comparison with the LSR object-based classifications. For the baseline HSR classification, an NDVI 

threshold of 0.25 was found to perform best for separating vegetation and non-vegetation based on visual 

evaluation, so this threshold was used for all of the binary classifications. Although the baseline 

classification is not 100% accurate, it is assumed to be more accurate than the LSR classifications due 

to its higher spatial resolution, and thus useful for evaluating them. Based on the results from the first 

case study (reported in Section 3), the W2 spatial weighting scheme was used for SWSF (it was found 

to work well for a 5:1 image ratio).  

3. Results and Discussion 

3.1. Case Study 1: Urban Area 

The main findings for the urban case study, shown in Table 1, were: (1) the proposed SWSF approach 

resulted in lower MAE and RMSE values than the traditional USF approach when the ratio of the LSR 

image resolution to the HSR image resolution was 3:1 (0.9 m:0.3 m) or higher; (2) the most effective 

spatial weighting scheme differed based on the spatial resolution of the LSR image relative to the HSR 

image; and (3) MAE and RMSE values increased as the spatial resolution of the LSR image decreased 

(as should be expected).  

With regards to the performance of the different SWSF weighting schemes, there were clear trends 

for each LSR image. For the 0.6 m (2:1 ratio) and 0.9 m (3:1 ratio) images, MAE and RMSE increased 

as the weights of edge pixels decreased (i.e., from W1 to W9). For the 1.5 m image (5:1 ratio), the errors 

decreased as the weights of edge pixels decreased until W2–W3, and then increased again as the weights 

of edge pixels further decreased. Finally, for the 3.0 m image (10:1 ratio), errors decreased as the weights 

of edge pixels decreased, but there were no significant changes after W5–W6. For all of the LSR images, 

there were few changes in MAE and RMSE values for W6–W9 because many segments did not have 

any pixels with distances of greater than 6 from their boundary. 
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Table 1. Mean Average Error (MAE) and Root Mean Square Error (RMSE) of the mean segment values extracted from the lower spatial 

resolution images. Bold values indicate the lowest MAE and RMSE values for each image. USF, unweighted segment-level fusion approach; 

W1–W9, spatial weighting schemes 1–9. 

Spatial Weighting Scheme 
MAE RMSE 

0.6 m Image (2:1) 0.9 m Image (3:1) 1.5 m Image (5:1) 3.0 m Image (10:1) 0.6 m Image (2:1) 0.9 m Image (3:1) 1.5 m Image (5:1) 3.0 m Image (10:1) 

None (USF) 1.63 3.51 9.23 22.91 3.04 5.22 15.29 32.75 

W1 2.36 2.55 8.38 21.82 3.24 4.23 14.81 31.82 

W2 4.69 4.21 7.81 20.84 5.76 5.58 14.15 31.25 

W3 5.75 5.23 8.05 20.16 7.04 6.67 14.04 30.85 

W4 6.20 5.71 8.34 19.80 7.58 7.21 14.12 30.67 

W5 6.38 5.92 8.50 19.64 7.82 7.45 14.20 30.59 

W6 6.47 6.02 8.59 19.59 7.93 7.57 14.24 30.57 

W7 6.52 6.07 8.64 19.58 7.99 7.63 14.27 30.57 

W8 6.55 6.10 8.66 19.58 8.01 7.66 14.29 30.57 

W9 6.56 6.11 8.68 19.58 8.03 7.68 14.30 30.57 
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To understand the reason for the differing trends and different optimal spatial weighting schemes for 

each LSR image, it is useful to take into account the distance range from segment boundaries at which 

partial sub-objects occur in each LSR image. In this study, the HSR and LSR images were perfectly  

co-registered, so it was relatively simple to calculate the distance from segment boundaries at which 

partial sub-objects could be found. For example, as shown in Figure 2, at a 2:1 ratio, a partial sub-object 

could be located up to one pixel from a segment boundary because one LSR pixel becomes four (2 × 2) 

resampled HSR pixels. Following this logic, the maximum distance (Dmax) of the range is given by: ܦ௫ = ܴܵܮ ݅݉ܽ݃݁ ܴܵܪ݊݅ݐݑ݈ݏ݁ݎ ݅݉ܽ݃݁ ݊݅ݐݑ݈ݏ݁ݎ − 1 (2)

So, at a 3:1 ratio, a partial sub-object could be located up to two pixels from a segment boundary; at 

a 5:1 ratio, up to four pixels; at a 10:1 ratio, up to nine pixels. Given these distance ranges, the optimum 

weighting schemes should be: W1 (or possibly USF) for the 0.6 m resolution image, between W1–W2 

for the 0.9 m image, between W1–W4 for the 1.5 m image, and between W1–W9 for the 3.0 m resolution 

image. In terms of actual performance, for the 0.6 m resolution image, USF performed best, followed by 

W1. For the 0.9 m image, W1 performed best. For the 1.5 m image, the optimal weighting schemes—W2 

and W3—were at the middle of the expected range. For the 3.0 m resolution image, the optimal 

weighting schemes were W7–W9, though no major changes occurred after W5, which was also around 

the middle of the expected range. These results suggest that an appropriate spatial weighting scheme for 

SWSF would be around the middle of the range in which partial sub-objects exist, which should be 

somewhat expected because it represents a good balance between penalizing too many or too few pixels 

near segment boundaries (since only a fraction of the partial sub-objects are located at the maximum and 

minimum ends of the range). In practice, the LSR and HSR images may not be perfectly co-registered, 

but Equation (2) should still provide a reasonable estimate of the distance range at which partial  

sub-objects would be located. 

3.2. Case Study 2: Mixed Agricultural/Forested Area 

For the agricultural/forested area case study, the SWSF classified “vegetation”/”non-vegetation” map 

had a higher overall classification accuracy (OA; 0.967) and kappa coefficient ( ݇; 0.873) than the USF 

map (OA of 0.962 and ݇ of 0.853) when evaluated against the baseline HSR map, as shown in Table 2. 

To test whether the classification results of SWSF and USF were statistically significant, a pairwise  

z-test [19] was performed, with the null hypothesis being that there was no significant difference between 

the two classifications. A z-score of 14.96 was obtained, indicating that the difference between the two 

classifications was statistically significant at a 99% confidence level. As shown in Figure 6, SWSF 

produced more accurate results for many small and/or thin image segments that were surrounded by a 

different land cover class. However, for relatively large image segments, or any segments that were 

surrounded by other segments belonging to the same land cover class, the classification results of SWSF 

and USF were basically identical.  

These results indicate that SWSF can achieve higher classification accuracy than USF, although in 

some cases (e.g., for mapping large, non-linear features like large forest patches or agricultural fields) it 

may not be worth the extra processing effort. On the other hand, SWSF may have some significant 

advantages compared to USF in other cases, e.g., for mapping land use/land cover (LULC) change, as 
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SWSF should be able to better detect small LULC conversions as well as new thin linear features like 

roads, which are often drivers of future LULC change [20]. 

Table 2. Error matrices for the spatially-weighted segment-level fusion (SWSF) and USF 

object-based classifications (compared against the baseline higher spatial resolution (HSR) 

image classification). V, “vegetation”; NV, “non-vegetation”; PA, producer’s accuracy; 

UA, user’s accuracy; OA, overall accuracy; ݇, kappa coefficient.  

SWSF USF 

 V NV Total PA  V NV Total PA 

V 465,089 6015 471,104 0.987 V 464,972 6132 471,104 0.987 

NV 12,610 77,224 89,834 0.860 NV 15,157 74,677 89,834 0.831 

Total 477,699 83,239 560,938  Total 480,129 80,809 560,938  

UA 0.974 0.928   UA 0.968 0.924   

    OA = 0.967 ݇ = 0.873     OA = 0.962 ݇ = 0.853

 

Figure 6. RapidEye image of a mixed agricultural/forested area (a) and the baseline object-based 

classification of this image (b). Classification results using SWSF (c) and USF (d) to extract 

spectral values (NDVI) from a simulated 30 m resolution image. Green represents 

“vegetation” and gray represents “non-vegetation” land cover. Colored rectangles highlight 

some areas with significant differences between the SWSF and USF classification results. 
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3.3. General Discussion 

Based on the results of this study, SWSF can be useful for deriving descriptors of image segments 

from LSR images, such as high spectral or temporal resolution information, and has the potential to 

increase the accuracy of subsequent analysis performed on the segments (e.g., classification, extraction 

of biophysical parameters based on the spectral values of segments, etc.) when the ratio of the LSR to 

HSR image resolution is greater than 2:1. Unlike pixel-level fusion methods, which typically work best 

for fusing images with similar spectral ranges and/or similar acquisition dates [21], SWSF can be easily 

applied for fusing any type of imagery (e.g., fusing visible and synthetic aperture radar imagery, visible 

and thermal imagery, etc.) because it is insensitive to the correlation between the HSR and LSR images. 

However, since in many cases pixel-level fusion can be useful for image analysis tasks such as image 

classification [22–25], it should be emphasized that pixel-level fusion could also be performed in 

combination with SWSF. For example, instead of simply resampling the LSR image to match the HSR 

image (as was done in this study), a pixel-level image fusion method could first be applied to the LSR 

image to enhance its spatial quality, and then mean segment values could be extracted from the  

spatially-enhanced LSR image (instead of the resampled LSR image) using SWSF. Future work could 

investigate whether this combination of pixel- and segment-level fusion leads to more accurate image 

analysis than either fusion method alone, and whether it is worth the extra processing time/effort. 

It should also be noted that the applications of SWSF are not limited to the extraction of spectral 

information for image segments (polygons) generated by an automated segmentation algorithm, and in 

theory can be used for any type of image-to-polygon fusion. For example, it could be used to fuse an 

image with OpenStreetMap building footprint polygons to extract the reflectance properties of individual 

rooftops (e.g., for estimating the energy savings potential of the building [26]), or to fuse an image with 

manually-digitized polygons of agricultural fields to extract crop-related parameters for each field. 

Investigation of SWSF (and other image-to-polygon fusion methods) for these types of fusion tasks 

could also be an interesting future research topic. 

4. Conclusions  

A spatially-weighted segment-level fusion (SWSF) method was proposed for fusing lower spatial 

resolution (LSR) images with higher spatial resolution (HSR) images at the image segment level.  

It involves segmenting a higher spatial resolution (HSR) image and then extracting additional descriptors 

(mean segment values) from LSR images using a spatially-weighted calculation method. SWSF 

extracted more accurate spectral information of land cover features than the traditional unweighted 

segment-level fusion (USF) approach when the ratio of the LSR image resolution to the higher spatial 

resolution (HSR) image was 3:1 (0.9 m LSR image:0.3 m HSR image) or higher. SWSF was also found 

to increase image classification accuracy, particularly for segments that were small or narrow relative to 

the spatial resolution of the LSR image (i.e., segments containing a high proportion of mixed pixels 

along their boundary). From these results and based on the geometry of LSR and HSR pixels, SWSF is 

recommended for segment level fusion when the spatial resolution of LSR image relative to that of the 

HSR image is higher than 2:1. Future research is necessary to assess the impact of SWSF on other types 

of image analysis (e.g., regression tasks). 
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