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We developed a multiscale object-based classification method for detecting diseased
trees (Japanese Oak Wilt and Japanese Pine Wilt) in high-resolution multispectral
satellite imagery. The proposed method involved (1) a hybrid Intensity-Hue-Saturation
(IHS)/Smoothing Filter-based Intensity Modulation (SFIM) pansharpening approach 10
(IHS-SFIM) to obtain more spatially and spectrally accurate image segments; (2) syn-
thetically oversampling the training data of the “Diseased tree” class using the Synthetic
Minority Over-sampling Technique (SMOTE); and (3) using a multiscale object-based
image classification approach. Using the proposed method, we were able to map dis-
eased trees in the study area with a user’s accuracy of 96.6% and a producer’s accuracy 15
of 92.5%. For comparison, the diseased trees were mapped at a user’s accuracy of 84.0%
and a producer’s accuracy of 70.1% when IHS pansharpening was used alone and a sin-
gle-scale classification approach was implemented without oversampling the “Diseased
tree” class.

1. Introduction 20

Insects cause significant damage to forested areas of Japan. The Japanese pine sawyer
beetle (Monochamus alternatus) and the oak platypodid beetle (Platypus quercivorus) are
responsible for the large majority of the damage (Food and Agriculture Organization of the
United Nations Regional Office for Asia and the Pacific 2010). The pine sawyer beetle is the
vector for the pinewood nematode Bursaphelenchus xylophilus, which causes Japanese Pine 25

Wilt (JPW) disease (Kobayashi, Yamane, and Ikeda 1984), and the oak platypodid beetle
is the vector for the fungus Raffaelea quercivora, which causes Japanese Oak Wilt (JOW)
disease (Kubono and Ito 2002). JPW is spreading to higher-altitude and higher-latitude
regions, and JOW is rapidly spreading in many regions of Japan, and thus preventing fur-
ther expansion of these diseases is a high priority (Food and Agriculture Organization of the 30

United Nations Regional Office for Asia and the Pacific 2010). In the summer, pine sawyer
beetles and oak platypodid beetles emerge from trees killed the previous year, and then
proceed to attack and nest over the winter in new trees, continuing this cycle (Ohta et al.
2012; Uto et al. 2011). Thus, rapid detection and removal or treatment of newly infected
trees is necessary to prevent the beetles from emerging the following year and spreading 35

the diseases. Foliage discolouration is a clear sign of JPW and JOW, so the detection of a
diseased tree is typically synonymous with the detection of a discoloured tree. However,
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in areas of Japan with cool summer weather, B. xylophilus can become latent, causing a
delay or absence of symptoms (e.g. discolouration) in pine trees infected with JPW (Futai
2003). Nonetheless, the pine trees in these cool summer regions that exhibit discolouration 40

between July and October have been found to be the most important targets for prevent-
ing JPW from spreading (Ohta et al. 2012). In this study, we focus on mapping trees with
discoloured foliage, using multispectral satellite imagery acquired in late August.
Previous remote sensing studies have found that high-spatial resolution imagery is

needed for detecting JPW and JOW at the individual tree level (Komura et al. 2003; Lee 45

and Cho 2006). In true colour images the discoloured trees appear more red-to-brown in
colour than surrounding trees. Past research has used high-spatial resolution hyperspectral
images from airborne sensors to detect JOW (Dellerba 2010), but these images are gen-
erally expensive to acquire and the size of the data is quite large due to the high number
of spectral bands. Since it is relatively easy to visually identify discoloured trees in true 50

colour and colour-infrared images, hyperspectral imagery may not be needed for image
classification. High-resolution multispectral images acquired from spaceborne sensors such
as QuickBird, GeoEye-1, or WorldView-2 are less expensive and easier to acquire than
airborne hyperspectral images, so developing a method for detecting JPW and JOW in
this imagery would be more useful for practical applications. However, no past studies of 55

which we are aware have quantitatively assessed the accuracy at which JPW or JOW could
be mapped in multispectral imagery. Additionally, no past studies have used an object-
based image analysis (OBIA) approach, which typically performs better than a pixel-based
approach for classifying high-resolution images (Blaschke, Burnett, and Pekkarinen 2004;
Yu et al. 2006; Myint et al. 2011). 60

In this study, we developed a new method for detecting diseased pine and oak trees in
high-resolution multispectral satellite imagery. First, the imagery was pansharpened using
an Intensity-Hue-Saturation (IHS) pansharpening approach because it was found to lead to
accurate image segmentations in previous research (Johnson, Tateishi, and Hoan 2012).
Next, we adopted a multiscale OBIA approach (Johnson 2013) to incorporate prelimi- 65

nary Support Vector Machine (SVM) classification results (class assignments and posterior
probabilities) from many segmentation levels into a final land cover classification. The
land cover types of interest, diseased pine and oak trees, were sparse compared with the
other land cover in the study area, so collecting training data for this class was more dif-
ficult and time consuming. As a result, we had a highly imbalanced training data set, with 70

training data for the target class comprising only 1.7% of the total training set. Highly
imbalanced training data sets have been shown to result in lower classification accuracy
for the minority class (Solberg and Solberg 1996), so prior to SVM classification we
used the Synthetic Minority Over-sampling Technique (SMOTE, Chawla et al. 2002) to
artificially oversample the minority class. Finally, since IHS pansharpening results in spec- 75

tral distortion, we tested the effect of replacing the IHS spectral information of image
segments with (i) the original multispectral information and (ii) the spectral informa-
tion from another pansharpening algorithm, Smoothing Filter-based Intensity Modulation
(SFIM; Liu 2000), which preserves spectral information better than IHS pansharpening.
Our main findings were that (1) the use of a multiscale OBIA approach outperformed 80

the single-scale OBIA approach; (2) performing SMOTE prior to image classification
led to higher classification accuracy; and (3) replacing IHS spectral information with the
original multispectral or SFIM spectral information also resulted in higher classification
accuracy.
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1.1. Pansharpening methods 85

High-spatial resolution spaceborne sensors such as QuickBird, GeoEye-1, and
WorldView-2 acquire images with a few multispectral (MS) bands and a finer resolution
panchromatic (PAN) band. For these types of images, “pansharpening” image fusion meth-
ods are often performed to improve the spatial resolution of the MS bands using the PAN
band (Schowengerdt 2006). Due to its speed and ease of implementation, IHS is one of 90

the most commonly used pansharpening methods (Tu et al. 2001). IHS is very efficient at
enhancing the spatial information of MS bands – it preserves all of the PAN band’s spatial
details (Tu et al. 2001). The main problem with IHS pansharpening is that it distorts the
spectral information of the MS bands (Tu et al. 2001). An IHS pansharpening algorithm
for four-band images is given by Tu et al. (2004) as 95
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where
δi = PAN − I

and
I = α1 × B+ α2 × G+ α3 × R+ α4 × NIR,

B′ihs is the pansharpened value for the blue band, B is the digital number (DN) value of the 100

pixel in the original blue band (radiance or reflectance values can be used alternatively),
and PAN is the DN of the pixel in the PAN image. G, R, and NIR refer to the DN values of
the green, red, and near infrared bands, respectively. To minimize spectral distortion caused
by the mismatch between the spectral response of the PAN and MS bands, band weights
(α1 to α4) used for calculating Intensity (I) can be adjusted based on the spectral response 105

curve of the sensor (i.e. low weight given to MS bands with little overlap with the PAN
band, and vice versa). However, even after adjusting I , significant spectral distortion may
exist (Johnson, Tateishi, and Hoan 2012).
On the other hand, SFIM is a pansharpening algorithm that is very good at minimizing

the distortion of MS information (Tu et al. 2012). However, it does not enhance the spatial 110

information of the MS bands to the same degree as IHS. Unlike IHS, SFIM can be applied
to a four-band image without requiring α1 to α4. Instead, a smoothed version of the PAN
band, typically obtained using a 7 × 7 mean filter (Tu et al. 2012), is used. SFIM can be
calculated as
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where B′sfim is the pansharpened value for the blue band and PANsmooth is the DN value of 115

the pixel in the PAN band after the 7 × 7 mean filter has been applied. Thus, any change
in the spectral information of the MS bands is caused solely by PAN/PANsmooth. This SFIM
equation is very similar to the “smart mode” of the Hyperspherical Color Sharpening (HCS)
algorithm (Padwick et al. 2010) developed for WorldView-2 imagery.
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In a previous study, Johnson, Tateishi, and Hoan (2012) found that IHS pansharp- 120

ened images produced segmentations that were more spatially accurate, while SFIM better
preserved the spectral information of image segments. Based on these findings, a hybrid
IHS-SFIM approach was recommended for OBIA. However, in the previous study, no
image classification was done to confirm that a hybrid pansharpening approach could actu-
ally achieve a more accurate classification. So, one important contribution of this study 125

was that we tested hybrid pansharpening approaches for OBIA to assess their impact on
classification accuracy.

1.2. Multiscale OBIA

OBIA, which involves segmenting an image into relatively homogeneous regions (i.e.
“image segments” or “image objects”) prior to image classification, has been shown to 130

increase classification accuracy by incorporating the spectral (e.g. mean) and non-spectral
(e.g. texture, size, shape) information of image segments for classification (Blaschke,
Burnett, and Pekkarinen 2004; Yu et al. 2006; Myint et al. 2011). The average size and/or
homogeneity of image segments is typically determined by user-defined segmentation
parameters, but since objects of interest in an image often differ in size and/or texture, use 135

of multiscale information can result in higher classification accuracy (Bruzzone and Carlin
2006; Duro, Franklin, and Dubé 2012; Johnson 2013). Multiscale object-based classifica-
tion approaches can be generally placed into two categories: (1) rule-based classification
approaches based on expert knowledge (e.g. Zhou and Troy 2009), and (2) approaches that
use automated classification algorithms like SVM (Bruzzone and Carlin 2006; Johnson 140

2013) or Random Forests (Duro, Franklin, and Dubé 2012). We focus on the second cat-
egory, since the more automated methods are less subjective and more straightforward to
apply to other study areas.
One popular multiscale classification approach involves (1) assigning the spectral and

spatial information of image segments from coarser segmentation levels to the pixels 145

(Bruzzone and Carlin 2006) or finer-scale image segments (Duro, Franklin, and Dubé
2012) that they contain, and (2) using this multiscale information to classify the finest-
scale segments. Another multiscale approach uses posterior probability estimates from the
preliminary classifications of multiple image segmentation levels to perform a final classifi-
cation (Johnson 2013). In this approach, the different segmentation levels are hierarchically 150

linked (i.e. the finest-scale segments are linked to the segments they are contained by in the
coarser segmentation levels) to allow for multiscale analysis of the preliminary classifica-
tion results (class assignments and posterior probabilities), and the final class assignment is
performed for the finest-scale segments by identifying the class with the highest posterior AQ1
probability. 155

2. Study area and data

Our study area (approximately 3.0 km × 2.5 km) was located near Yonezawa City in
Yamagata Prefecture, Japan, and consisted mainly of deciduous broadleaf forest and
evergreen needleleaf forest, with smaller areas of clear-cut forest and residential and agri-
cultural land. This location was chosen because it contained many diseased oak and pine 160

trees, and also because the area contained many other types of land use and land cover
typically located near forests in Japan (e.g. residential areas, agricultural areas with a mix-
ture of barren and vegetated fields). New occurrences of JOW and JPW in the region can
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generally be observed between June and October (Kobayashi, Yamane, and Ikeda 1984;
Uto et al. 2011; Ohta et al. 2012), so we acquired a high-resolution QuickBird image of 165

the study area from 27 August 2012 to detect the diseased trees. The QuickBird image
contained four 2.4 m resolution MS bands (B, 0.450–0.520 μm; G, 0.520–0.600 μm; R,
0.630–0.690 μm; NIR, 0.760–0.900 μm) and a 0.6 m PAN band (0.445–0.900 μm).

3. Methods

3.1. Pansharpening 170

The QuickBird image was orthorectified using a 10 m resolution digital elevation
model. After orthorectification, the image was pansharpened using the IHS algorithm in
Equation (1). We chose to apply this pansharpening algorithm to the image prior to image
segmentation because its ability to enhance the MS spatial information to a high degree
was found to be beneficial for segmentation in previous research (Johnson, Tateishi, and 175

Hoan 2012). To minimize the spectral distortion caused by the mismatch between the
spectral response of the PAN and MS bands, band weights (α1 to α4) for calculating I in
Equations (1)–(3) were set to 0.25, 0.75, 1, and 1, respectively, based on the simple spectral
adjustment IHS approach recommended for QuickBird imagery in Tu et al. (2005).

3.2. Image segmentation 180

After pansharpening, the image was segmented using the “Multiresolution Segmentation”
algorithm in eCognition Developer 8.7 (Trimble 2012). This algorithm contains three
user-defined segmentation parameters: a “Scale parameter” (range 0–∞) that controls the
maximum heterogeneity of image segments, a “Shape” parameter (range 0–1) that con-
trols the weights of spectral and spatial information in the segmentation process, and a 185

“Compactness” parameter (range 0–1) that controls the compactness of image segments
(Trimble 2012). We used the IHS pansharpened G, R, and NIR bands for segmentation, but
did not include the B band since it was highly correlated with the G band. Image segmen-
tation was performed at four scale levels by adjusting the Scale parameter from 15 to 30 in
steps of 5. For the remainder of this article, the four segmentation levels are referred to 190

as scale 15 segmentation, scale 20 segmentation, scale 25 segmentation, and scale 30 seg-
mentation for the sake of simplicity. The segments in the finer segmentation levels were
completely contained by segments in the coarser segmentation levels (i.e. segments from
different segmentation scales did not intersect one another). Use of multiple segmentation
scales was necessary because not all diseased trees were segmented optimally at any single 195

scale. Scale parameters lower than 15 were not used because they resulted in excessive over-
segmentation of diseased trees (i.e. segments were much smaller than the diseased trees),
and Scale parameters higher than 30 were not used because they resulted in undersegmen-
tation of the diseased trees (i.e. segments were larger than the diseased trees, so they also
contained other types of land cover). Since the trees were not uniform in shape, the Shape 200

parameter was set to a very low level (0.1) for all segmentations to allow for spectral infor-
mation to have a very high weight, and the Compactness parameter was set to 0.5 so that
neither compact nor non-compact segments was favoured. These shape and compactness
settings are typical for multispectral images because, in most cases, spectral information is
most useful for creating meaningful segments (Trimble 2012). 205

The pixels located within an image segment were used to calculate the spectral infor-
mation of the segment (e.g. mean value of each band, standard deviation of each band). For
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each image segment, we calculated mean spectral values for the G, R, and NIR bands
as well as two commonly used texture metrics; standard deviation and grey-level co-
occurrence matrix (GLCM) mean [all directions] (Haralick, Shanmugam., and Dinstein 210

1973). The B band was again excluded from analysis because of its high correlation with the
green band, and the PAN band was used for both texture calculations because it contained
the most detailed spatial information.

3.3. Training and validation data

After segmentation, training data were collected for two land cover classes “Diseased tree” 215

and “Other”, based on visual inspection of the imagery. The training data consisted of
4339 image segments. Many training segments were taken from each of the four segmenta-
tion levels, and the same training segments were used for classifying all four segmentation
levels. We found that collecting training data for the target class “Diseased tree” was diffi-
cult and time consuming because (1) this class comprised only a small part of the image and 220

(2) we needed to identify segments with boundaries that accurately matched the boundaries
of diseased trees in the image (since the training segment should have a good one-to-one
relationship with a diseased tree). On the other hand, collecting training data for the “Other”
class was fast and easy since we could simply identify a few locations with no diseased
trees and then select a large number of training samples at each of these locations. For the 225

“Other” class, we determined that it was not necessary for the training segment bound-
aries to accurately match the boundaries of land cover objects because the class was only
intended to provide examples of segments that were not diseased trees. For the “Diseased
tree” class, we selected 74 training segments from the four segmentation levels. Of these
74 training segments, 37 were from scale 15 segmentation, 17 were from scale 20 segmen- 230

tation, 10 were from scale 25 segmentation, and 10 were from scale 30 segmentation. For
the “Other” class, we selected a much larger number of training segments (4265) to ensure
that the main land cover types in the image were included in the training set. Of these
4265 training segments, approximately 25% were taken from each segmentation level.
Training segments taken from the four segmentation levels were all merged into a single 235

training set that was used for classification purposes.
To assess image classification accuracy, 500 validation points were generated using a

stratified random sampling approach (stratified by classified land cover). This sampling
approach was chosen to ensure that the “Diseased tree” class was adequately sampled. The
validation set consisted of 187 points belonging to the “Diseased tree” class and 313 points 240

belonging to the “Other” class (based on visual interpretation of the imagery). The valida-
tion points were used for calculating overall classification accuracy as well as producer’s
(e.g. errors of omission) and user’s accuracies (e.g. errors of commission) for the “Diseased
tree” class. An image segment was determined to be correctly classified if it was assigned
to the same class as the validation point found within it. 245

3.4. Replacing IHS spectral information

We tested the effect of replacing the IHS spectral values of image segments with (1) the
original MS spectral information and (2) the SFIM spectral information. The anticipated
result was that replacing the IHS spectral information would lead to higher classification
accuracy due to less spectral distortion. The spectral replacement process for (1) was done 250

by overlaying image segments onto the unsharpened MS image (i.e. the MS image with
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Original multispectral image

IHS pansharpened image SFIM pansharpened image

IHS segments overlaidon SFIM image

Figure 1. Spectral replacement process. In this example, the IHS image is segmented and then the
spectral information of the image segments is extracted from the SFIM image (rather than the IHS
image). Diseased trees appear white-to-grey in colour.

COLOUR
FIGURE

pixels upsampled to 0.6 m using nearest neighbour resampling) and then calculating the
new spectral information of image segments from the pixels located within the segments.
Likewise, the spectral replacement for (2) was done by overlaying image segments onto the
SFIM pansharpened image and calculating segment values from the SFIM pixels. Figure 1 255

shows the process used to replace the IHS spectral information of segments with SFIM
spectral information.

3.5. Minimizing effects of imbalanced training data set

Since our training data set was highly imbalanced, some classification algorithms will
simply assign all (or almost all) segments to the majority class to achieve a high over- 260

all classification accuracy (Solberg and Solberg 1996). For example, since 98.3% of the
training segments belonged to the “Other” class, a very high overall accuracy is achieved
simply by assigning all segments to that class. This is problematic since the minority class
is the one that is of interest. If too many segments are assigned to the “Other” class, a large
number of diseased trees will not be mapped (i.e. low producer’s accuracy). To increase 265

the producer’s accuracy of the minority class, we over-sampled it using SMOTE. SMOTE
takes a training sample in the minority class and introduces new synthetic examples in the
feature space between that training sample and one or more of its nearest neighbours in fea-
ture space, and then repeats this process for the entire training data set (Chawla et al. 2002).
SMOTE has two free parameters; the number of nearest neighbours and the percentage of 270

new training samples to create. For example, if the number of neighbours is set to 5 and
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the number of new training samples is set to 100%, the five nearest neighbours to a given
training sample will be identified, and one new training example will be created between in
the feature space between the original sample and one of the five nearest neighbours (ran-
domly selected). Using SMOTE in this way would double the size of the training set for 275

the minority class. For this study, we used the nearest 5 neighbours based on Chawla et al.
(2002), and set the number of new training samples to 100% because, as shown later in
Sections 4.1 and 4.2, the producer’s accuracies for the “Diseased tree” class were increased
to about the same level as the user’s accuracies after doubling the size of the training
data set. 280

3.6. Preliminary single-scale image classifications

Preliminary classifications of the four segmentation levels were done using SVM, a
machine-learning algorithm that identifies the optimal decision boundary between classes
to minimize classification errors (Burges 1998). SVM has been used for classification in
many recent remote sensing studies (Mountrakis, Im, and Ogole 2011), and it tends to be 285

more accurate for imbalanced data sets than other algorithms because only the samples
close to the decision boundary (i.e. the Support Vectors) are used for classification (Tang AQ2
et al. 2002). Prior to classification, a kernel is applied to the input feature space to increase
the separability between land cover classes. Details about the commonly used SVM ker-
nels in remote sensing are given by Kavzoglu and Colkensen (2009). In this study, we used 290

SVM with a radial basis function (RBF) kernel for classification because it has achieved
higher classification accuracy than other kernels in previous remote sensing studies (Foody
and Mathur 2004; Kavzoglu and Colkenson 2009). The free parameters for SVM – the cost
parameter (c) and the kernel spread function (γ ) – were optimized for each segmentation
by 10-fold cross-validation of the training data. We tested c values of 1.25−2, 1.25−1, . . ., 295

1.2531 and γ values of 1.25−30, 1.25−29, . . ., 1.2525. To allow for posterior probability esti-
mation, logistic regression models were fit to the output of the SVM classifications, and
posterior probabilities were calculated using Hastie and Tibshirani’s (1998) pairwise cou-
pling method. The final result of the preliminary classification process was that, in each of
the four segmentation levels, all image segments received a class assignment and a proba- 300

bility estimate for that class (e.g. a segment classified as “Diseased tree” with a probability
estimate of 0.85 has an 85% chance that it is actually a diseased tree). All classification
tasks were done using Weka 3.7.7, an open source data mining software package (Hall
et al. 2009). In this study, we tested the traditional SVM classification method (i.e. with-
out preprocessing the training data using SMOTE) and SVM with SMOTE preprocessing 305

(SMOTE-SVM).

3.7. Multiscale classification

To allow for multiscale analysis of the preliminary classification results, a series of spatial
joins was performed in ArcGIS 10 to provide the base classification units (i.e. the scale
15 segments) with the class assignments and posterior probabilities of the segments in 310

which they were contained in each of the three coarser segmentations. Next, the final clas-
sification was done for each of the base units by identifying the segmentation level at which
the highest posterior probability was achieved, and then assigning the base unit to the class
to which the highest probability corresponded. A simple example of this classification pro-
cess is shown in Table 1. Classification was done as the preliminary results from each of 315
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Table 1. Example of the multiscale classification process. “Scale 1” indicates the finest-scale seg-
mentation level and “Scale 2” indicates a coarser-scale segmentation level (i.e. segments that contain
the Scale 1 segments). The column highlighted in grey shows the actual (ground truth) land cover.

Segment
ID

True land
cover

Classified
land cover
(scale 1)

Posterior
probability
(scale 1)

Classified
land cover
(scale 2)

Posterior
probability
(scale 2)

Highest
posterior
probability

Final
classification
(scale 1)

1 Diseased
tree

Diseased
tree

0.497 Diseased
Tree

0.831 0.831 Diseased Tree

2 Other Other 0.892 Diseased
Tree

0.493 0.993 Other

3 Diseased
tree

Other 0.948 Diseased
Tree

0.991 0.991 Diseased Tree

the coarser segmentation levels were added to the base units (i.e. when classes and poste-
rior probabilities from scale 20 segmentation were passed on to the base units, and then
again when scale 25 classes and probabilities were added, etc.) to determine whether accu-
racy decreased due to the undersegmentation of diseased trees in the coarsest segmentation
levels. For the multiscale classifications, we used only the SMOTE-SVM classifications 320

since, as discussed in Section 4.1, they were generally more accurate than the classifications
without SMOTE.

4. Results and discussion

4.1. Single-scale classifications

For the single-scale classifications, our main findings were that (1) the use of SMOTE 325

typically increased all types of classification accuracy and (2) replacing the IHS spectral
information of image segments with the MS or SFIM spectral information also resulted
in higher classification accuracies. From Table 2, we can see that the segmentation with
the highest overall accuracy and the best balance between producer’s and user’s accu-
racies for the “Diseased tree” class was the scale 15 SMOTE-SVM classification with 330

MS spectral information. Comparison of the classification accuracies at each scale using
the different spectral information shows that MS and SFIM spectral information typi-
cally resulted in much higher overall and producer’s accuracies. User’s accuracy increased
slightly when MS information was used, and a small decrease in user’s accuracy occurred
when SFIM information was used (though this decrease was minor compared with the 335

increase in producer’s accuracy). In Table 2 it is also clear that, while SMOTE typically
increased producer’s accuracies significantly in the finest-scale segmentation levels, pro-
ducer’s accuracies remained low in the coarser segmentation levels. This was likely due to
the undersegmentation of many diseased trees in these coarse segmentation levels rather
than imbalanced training data, since undersegmented diseased trees were difficult to detect 340

when located within segments that also contained other types of land cover, resulting in
many omission errors.
The results of the preliminary classifications suggest that SMOTE-SVM may be use-

ful for binary classification of remote sensing images using object-based image analysis,
especially in cases where it is relatively fast and easy to acquire training segments for the 345

“Other” land cover class. Other remote sensing studies have recommended using one-class
classification algorithms for binary classification when training data for the “Other” class
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Table 2. Classified single-scale segmentations. Row highlighted in grey shows the most accurate
classification. SMOTE, Synthetic Minority Over-sampling Technique; OA, overall accuracy; UA,
user’s accuracy of the “Diseased tree” class; PA, producer’s accuracy of the “Diseased tree” class.

No SMOTE SMOTE
Spectral
information

Segmentation
scale OA(%) UA(%) PA(%) OA(%) UA(%) PA(%)

Intensity-Hue- 15 81.0 83.3 61.5 83.8 84.0 70.1
Saturation 20 78.4 89.1 48.1 81.6 91.3 56.1
(IHS) 25 74.8 93.0 35.3 76.0 93.5 38.5

30 71.4 97.9 24.1 72.0 98.0 25.7

None 15 86.6 86.6 75.9 90.0 88.7 84.0
(Original
multi-spectral
image)

20 83.2 91.2 61.0 87.6 94.3 71.1
25 79.4 92 49.2 83.4 95.6 58.3
30 75.8 95.8 36.9 78.6 98.8 43.3

Smoothing 15 86.2 73.6 98.4 83.6 72.5 90.4
Filter-Based 20 85.2 86.0 72.2 85.0 85.9 71.7
Intensity Modulation 25 81.6 92.8 55.1 82.6 92.4 58.3
(SFIM) 30 76.2 96.0 38.0 77.8 96.3 42.2

is difficult and/or time consuming to acquire (Li, Guo, and Elkan 2011), as these one-class
algorithms only require training samples for the class of interest. However, one-class clas-
sification methods that do not include any training data for the “Other” class may result in 350

low classification accuracy (Scott and Blanchard 2009) and/or have free parameters that
are difficult to optimize (Manevitz and Yousef 2001; Muñoz-Marí et al. 2010). We do not
compare SMOTE-SVM with one-class classifiers in this study, but suggest that researchers
take into account the difficulty (or ease) of acquiring training data for the “Other” class
when choosing the optimal algorithm for a binary classification. 355

4.2. Multiscale classifications

For the multiscale classifications, our main findings were that (1) using the multiscale
approach increased all measures of accuracy and (2) replacing IHS spectral information
with MS or SFIM information also led to higher classification accuracy. In this section, we
describe these results in more detail and discuss how they compare with the results of past 360

remote sensing studies.
As shown in Table 3, the multiscale classification with the highest overall accuracy and

best balance between user’s and producer’s accuracies for the “Diseased tree” class was the
one with SFIM spectral information and the preliminary classification results from all four
segmentation scales. The map of the diseased trees produced by this classification is shown 365

for the entire study area in Figure 2 and for a subset of the area in Figure 3. The maps show,
in general, a good match between the discoloured trees in the imagery (the reddish-brown
areas in the forest) and the classification result.
Comparing the most accurate classifications for each pansharpening method, we found

that replacing the IHS spectral information with MS and SFIM spectral information led to 370

an increase in overall accuracy of 3.6% and 6.0%, respectively, and an increase in pro-
ducer’s accuracy of 10.2% and 18.7%, respectively, for the “Diseased tree” class. The
user’s accuracy decreased slightly when IHS spectral information was replaced, but the
decrease (0.6% for MS and 2.7% for SFIM) was minimal compared with the increase in
producer’s accuracy. These results confirm that replacing IHS spectral information can lead 375
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Table 3. Multiscale classifications (e.g. 15–25 indicates that scale 15, 20, and 25 preliminary clas-
sifications were used for the multiscale classification). Row highlighted in grey shows the most
accurate classification. OA, overall accuracy; UA, user’s accuracy of the “Diseased tree” class; PA,
producer’s accuracy of the “Diseased tree” class.

Spectral information Segmentation scale(s) OA(%) UA(%) PA(%)

15 83.8 84.0 70.1
IHS 15− 20 88.0 93.2 73.3

15− 25 89.2 96.5 73.8
15− 30 90.0 99.3 73.8
15 90.0 88.7 84.0

MS 15− 20 93.0 95.8 85.0
15− 25 93.2 97.5 84.0
15− 30 93.6 98.7 84.0
15 83.6 72.5 90.4

SFIM 15− 20 92.8 88.7 92.5
15− 25 95.2 94.5 92.5
15− 30 96.0 96.6 92.5

140° 12′ 0″ E140° 11′ 0″ E

Diseased tree

(a) (b)

37° 54′ 0″ N

0 0.5 1
km

Figure 2. True colour QuickBird image of the entire study area (a) and the classified diseased trees
overlaid on the image (b). The red rectangle shows the location of the inset map in Figure 3.

COLOUR
FIGURE

Diseased tree

(a) (b)

0 0.25 0.5
km

Figure 3. True colour QuickBird image of a part of the study area (a) and the classified diseased
trees overlaid on the image (b). Diseased oak trees are located in the light green areas (broadleaf
forest) and diseased pine trees are found in the darker green areas (pine forest).

COLOUR
FIGURE
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to higher classification accuracy. Thus, we recommend the use of a hybrid pansharpening
approach for object-based classification of images with MS and PAN bands. Pansharpening
methods that enhance spatial details are recommended for segmentation since they tend
to produce more spatially accurate image segments (Johnson, Tateishi, and Hoan 2012),
and pansharpening methods that minimize spectral distortion (or use of the original 380

MS spectral information) are recommended for extracting the spectral information of
segments.
Our finding that classification accuracy increased when a multiscale approach was used

is consistent with past OBIA studies (Bruzzone and Carlin 2006; Duro, Franklin, and Dubé
2012; Johnson 2013). However, our finding that the most accurate classifications were 385

achieved when all segmentation levels were used for multiscale classification contrasted
with those of Johnson (2013), who found that including the undersegmented levels in the
multiscale classification led to lower classification accuracy. The different findings in this
study may be due to our different approach to collecting training data. Johnson (2013)
collected training segments from the finest segmentation level and used the segments that 390

contained these training segments as the training data for the coarser segmentation levels
(e.g. scale 20 segments were used for training scale 20 classification, etc.). The disadvan-
tage of this approach was that many training segments were undersegmented in the coarsest
segmentation levels, so the posterior probability estimates of segments in these levels were
not very accurate (since the undersegmented training segments were not truly representa- 395

tive of the objects of interest). We recommend the approach used in this study for training
data collection as it should provide better posterior probability estimates (and thus higher
classification accuracy for the multiscale data set).

5. Conclusions

In this study, we found that (1) performing SMOTE prior to SVM classification led to 400

fewer omission errors (i.e. a higher producer’s accuracy) for the “Diseased tree” class; (2) a
multiscale object-based classification approach outperformed the single-scale approach in
all cases; and (3) use of a hybrid IHS-SFIM pansharpening approach led to an increase in
overall accuracy of 6% and an increase in producer’s accuracy of 18.7% for the “Diseased
tree” class in the final multiscale classification. Based on the high user’s accuracy (96.6%) 405

and producer’s accuracy (92.5%) for the “Diseased tree” class that our proposed classifi-
cation method achieved, it may provide a viable method for detecting JPW and JOW in
forested areas of Japan, which is important for preventing further spreading of diseases.
In regard to training data collection, we found that it was time consuming to acquire

training samples for the minority class, “Diseased tree”, because the diseased trees were 410

scattered and the training segments needed to accurately match the boundary of a diseased
tree (since the training segments should be representative of the land cover of interest).
On the other hand, we could acquire training samples for the “Other” class very quickly by
simply identifying a few locations with no diseased trees and take several hundred training
samples at each of these locations. Based on our findings, we make some general rec- 415

ommendations for future remote sensing studies. First, we recommend SMOTE (or other
minority class oversampling techniques) for binary classification tasks when it is easy to
acquire a large number of training samples for the majority class. We also recommend a
multiscale object-based classification approach for binary classification of high-resolution
imagery rather than a single-scale approach. Finally, a hybrid pansharpening approach is 420

recommended to obtain spatially and spectrally accurate image segments.
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For future research, it would be interesting to test our proposed classification approach
with other classification algorithms that also provide posterior probability estimates (e.g.
Relevance Vector Machines, Random Forests, Neural Networks) to allow for a comparison
with SVM. It would also be interesting to test other multiscale classification approaches 425

(e.g. Bruzzone and Carlin 2006; Duro, Franklin, and Dubé 2012) for mapping diseased
trees. In our study, we assigned all diseased trees to a single class, but since it may also
be useful to map each type of diseased tree separately, our methods could also be tested
for mapping JPW and JOW as separate classes. In this case, an oversampling technique
for multi-class classification rather than binary classification should be used, such as the 430

Diverse Ensemble Creation by Oppositional Relabeling of Artificial Training Examples
(DECORATE) technique (Melville and Mooney 2004). Finally, it is necessary to test our AQ3
proposed classification method for detecting other types of plant diseases and using other
types of imagery to further evaluate its potential applications.
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