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Abstract: Land use/cover change (LUCC) significantly alters the carbon storage capacity of ecosys-
tems with a profound impact on global climate change. The influence of land use changes on carbon
storage capacity and the projection of future carbon stock changes under different scenarios are
essential for achieving carbon peak and neutrality goals. This study applied the PLUS-InVEST model
to predict the land use pattern in China’s arid Xinjiang Region in 2020–2050. The model assessed
the carbon stock under four scenarios. Analysis of the historical LUCC data showed that the carbon
storage in Xinjiang in 2000–2020 in five-year intervals was 85.69 × 108, 85.79 × 108, 85.87 × 108,
86.01 × 108, and 86.71 × 108 t. The rise in carbon sequestration capacity in the study area, attributable
to the expansion of cropland, water, and unused land areas, brought a concomitant increment in
the regional carbon storage by 1.03 × 108 t. However, prediction results for 2030–2050 showed
that carbon storage capacity under the four scenarios would decrease by 0.11 × 108 and increase
by 1.2 × 108, 0.98 × 108 t, and 1.28 × 108 t, respectively. The findings indicate that different land
transfer modes will significantly affect Xinjiang’s carbon storage quantity, distribution, and trend.
This research informs the past, present, and future of carbon storage in arid ecosystems of Xinjiang. It
offers a reference for Xinjiang’s development planning and informs the efforts to achieve the carbon
peak and neutrality goals.

Keywords: LUCC; CA-Markov; PLUS-InVEST; multi-scenario simulation; carbon storage; carbon
peak and neutrality

1. Introduction

Land use and cover changes (LUCC) significantly contribute to global warming by
influencing the carbon cycle within terrestrial ecosystems [1–3]. Carbon storage, a critical
ecosystem service, is a key indicator of the impacts of global climate change on terrestrial
ecosystems [4]. Enhanced carbon storage reduces atmospheric CO2, thereby mitigating
the greenhouse effect and contributing to the regulation of global climate [5]. LUCC is
recognized as a primary factor shaping carbon storage levels due to its impact on ecosystem
structure and function [6]. Consequently, the study of land use change has become a central
approach in examining the impacts on terrestrial ecosystems [7].

LUCC is a major driver of various regional and global environmental processes,
including disruptions to the terrestrial carbon cycle, which is intricately linked to climate
change research. Its effects on global carbon cycling, atmospheric CO2 concentrations, and
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climate change necessitate detailed investigations [8–10]. Land use transformations and
the resultant land use configurations principally influence the capacity of vegetation and
soils to sequester carbon. A reduced sequestration potential leads to the degradation of
this vital ecosystem service [11,12]. LUCC can alter ecosystem structure and function in
ways that affect carbon storage, reflecting global climate change trends. Disruptions to the
carbon cycle due to LUCC can depress the benefits of carbon storage, such as reducing
atmospheric CO2 and mitigating climate change [13,14].

China has set a strategic objective to achieve its dual carbon goals (peak and neu-
trality), which are integral to the nation’s socio-economic development. Augmenting
carbon storage in terrestrial ecosystems has been extensively researched across various
academic fields [15,16]. Insights from these studies enhance our understanding of human
influences on carbon dynamics and support efforts to reduce carbon emissions. In this
context, provincial and municipal governments in China are actively seeking ways to
achieve coupled source–sink targets. They include evaluating the impacts of LUCC on
carbon storage to decrease carbon emissions in Xinjiang, located in the country’s arid
northwest region [17]. Protecting natural forest and grassland ecosystems is essential for
maintaining their capacity to capture atmospheric CO2 through photosynthesis and storage
in biomass [18]. A comprehensive analysis of LUCC can optimize regional development
potential by optimizing land use structure, enhancing ecosystem services, and mitigating
climate change impacts.

The research on land use impacts spans various scales, covering national, provincial,
and municipal levels. These studies often focus on humid/semi-humid climates and
economically developed regions, examining LUCC spatiotemporal characteristics [19,20],
LUCC drivers [21], ecological values of land use [22], and landscape patterns [23]. The
latest CMIP6 climate change model offers a range of future scenarios for global climate
change [24,25]. Relevant studies have assessed carbon storage in some parts of China by
modeling various scenarios. These studies have explored variations in LUCC and carbon
storage under different development models by integrating land use prediction models
with the InVEST model [26]. Land use prediction models, such as the PLUS model, have the
advantage of applying cellular automata to deeply investigate land use changes in order
to more accurately simulate complex evolutionary processes of multiple land classes [27].
The InVEST (Integrated Valuation of Ecosystem Services and Trade-offs) model estimates
changes in the quantity and value of ecosystem services based on land use data, providing
a scientific basis for quantifying the benefits and impacts of human activities [28]. Based
on these methods, Li et al. [29] evaluated the spatiotemporal characteristics of carbon
storage in the past 20 years. They predicted land use changes and effects on carbon storage
under three scenarios for 2050. He et al. [30] applied the PLUS and InVEST models to
quantify the carbon storage and spatial distribution in Guilin. They found that high-carbon-
storage regions were mainly located in the northeast and northwest of the study area. Zhu
et al. [31] used the PLUS-InVEST model to simulate the trajectory of carbon storage changes
in Hunan Province from 2000 to 2020 under various scenarios, demonstrating high accuracy
in their land use forecasting. Similarly, Yu et al. [32] employed the CA and PLUS models
to project changes in ecosystem carbon storage in the Beijing–Tianjin–Hebei region under
distinct development scenarios from 2030 to 2060, incorporating a carbon density table for
vegetation types. Their study demonstrated that the remote sensing monitoring of land use
changes improves the understanding of the spatial distribution of carbon storage at large
scales, contributing to the carbon balance stabilization of regional ecosystems. Previous
studies focused on the impact of land use changes on carbon storage under different
development scenarios using land use modeling. However, a research gap exists in China’s
arid and semi-arid regions with fragile ecological environments. Hence, it is necessary
to conduct more research to clarify the spatiotemporal distribution of carbon stocks in
arid and semi-arid zones that are more sensitive to climate change, and project future
trends. In addition, considering the natural conditions of Xinjiang, such as its vast area,
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high mountains, and extensive deserts, remote sensing technology can facilitate ecosystem
carbon stock estimation and monitoring.

Accordingly, this study simulates the spatiotemporal patterns of carbon storage in
Xinjiang under four scenarios using the coupled PLUS-InVEST model. The project aims
to (1) analyze the past and present characteristics of LUCC dynamics from 1980 to 2020
at 10-year intervals; (2) predict the LULC (land use/land cover) map for 2050 under four
scenarios to assess the distribution of carbon storage in Xinjiang by combining the CA-
Markov and InVEST models; and (3) clarify the impact of LULC dynamics on ecosystem
carbon stocks in arid zones from 2000 to 2050. The results can inform planning for economic
development under different scenarios, balancing ecological and environmental protection.
The findings are expected to support decision-making to achieve nature conservation and
sustainable development in China’s ecologically vulnerable arid regions of the northwest,
fostering regional green and low-carbon growth.

2. Materials and Methods
2.1. Study Area

The Xinjiang Uygur Autonomous Region (hereinafter referred to as “Xinjiang”) lies
in northwest China, in the heart of the large Eurasian land mass (73◦29′54′′~96◦23′3′′E,
34◦20′11′′~49◦10′55′′N). Situated in China’s continental interior (Figure 1), it has a wide
seasonal temperature range, low and unevenly distributed precipitation, abundant sun-
shine, and a high potential evapotranspiration rate. The high mountain ranges function as
topographic barriers that hinder water vapor passage to bring a typical temperate conti-
nental arid climate [33]. The low vegetation cover and distinct topographic and climatic
features lead to significant spatial and altitudinal variations of regional flora. The region is
ecologically vulnerable and climate change sensitive. The three major mountain ranges in
Xinjiang, Altai, Tianshan and Kunlun, are thousands of kilometers long, running through
Central Asia and connecting to South Asia. The region includes large intermontane basins
such as Junggar and Tarim and extensive deserts such as Gurbantunggut, Taklamakan,
Kumtag, Badain Jaran, and Tengger [34].
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Figure 1. Maps of the study area: (a) Geographic location of Xinjiang in China; (b) topography of
Xinjiang.
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2.2. Data Sources and Preprocessing
2.2.1. LULC Driving Data

The LUCC drivers encompassed socio-economic, natural, and accessibility factors.
Socio-economic factors comprised GDP representing socio-economic status and population
(POP). Natural factors, such as elevation and slope, were extracted from the digital elevation
model (DEM). This Supplementary Information includes temperature and precipitation
data. The accessibility factor includes proximity to the city and distance to the river, road,
railway, and national highway. All map data used in this study were transformed into the
Krasovsky 1940 Albers coordinate system (Table 1).

Table 1. Data collection and sourcing.

Driving Factor Accuracy Source

Land use 30 m Data Center for Resources and Environmental Sciences of the Chinese
Academy of Science (https://www.resdc.cn/, accessed on 20 April 2024)

Gross domestic product (GDP)
Population (POP) 1 km Data Center for Resources and Environmental Sciences of the Chinese

Academy of Science (https://www.resdc.cn/, accessed on 20 April 2024)
Temperature
Precipitation

Digital elevation model (DEM)
Slope

30 m Geospatial data cloud (http://www.gscloud.cn, accessed on 3 March 2024)

Proximity to city
Distance to river
Distance to road

Distance to railway
Distance to national highway

30 m 1:250,000 national basic geographic database (https://www.webmap.cn,
accessed on 13 July 2024)

2.2.2. Carbon Density Data

These data were sourced from the National Ecosystem Science Data Center (https:
//www.cern.ac.cn, accessed on 16 October 2024). They were realized by merging the carbon
density of China’s terrestrial ecosystems with pertinent experimental data [35]. The dataset
provides a comprehensive and structured profile of organic carbon density in vegetation
and soil of different ecosystems in Xinjiang (Table 2).

Two methods were used in this study to calculate carbon density data: searching
and revising carbon density data in comparable regions using a precipitation correction
model [36]. The estimation of carbon density values for water bodies and construction
sites, as well as biomass and soil carbon density, was calculated by applying correction
factors in conjunction with the effects of precipitation and temperature. The equations for
these correction factors are presented below [37,38]. This model is generally suitable for
regions with relatively uniform climate conditions; however, adjustments may be needed
to fully account for Xinjiang’s climatic diversity. Carbon storage in dead organisms was
not determined in this survey due to difficulties in data collection and the inherently low
carbon storage in dead organisms [39,40]. The exact formula is as follows:

CBP = 6.798e0.0054MAP(R2 = 0.70) (1)

CBT = 28MAT + 398(R2 = 0.47, P ≤ 0.01) (2)

CSP = 3.3968MAP + 39996.1(R2 = 0.11) (3)

where CBP and CBT represent biomass carbon density based on mean annual precipitation
and mean annual temperature, respectively, and CSP represents soil carbon density. MAP
stands for mean annual precipitation, and MAT represents mean annual temperature. The
equations for the precipitation and temperature correction factors are:

https://www.resdc.cn/
https://www.resdc.cn/
http://www.gscloud.cn
https://www.webmap.cn
https://www.cern.ac.cn
https://www.cern.ac.cn
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KBP =
C′

BP
C′′ BP

; KBT =
C′

BT
C′′ BT

; KB = KBP×KBT =
C′

BP
C′′ BP

× C′
BT

C′′ BT
(4)

KS =
C′

SP
C′′ SP

(5)

where KBP represents the precipitation correction factor for biomass carbon density, KBT
represents the temperature correction factor for biomass carbon density, KB represents the
correction factor for biomass carbon density, and KS represents the correction factor for soil
carbon density. The data from Xinjiang are denoted by C

′
, and the data from China are

denoted by C
′′
.

We acquired initial carbon density data on the vegetation and soil of China’s cultivated
land, forest, and grassland from Xie et al. [41], and cultivated land, forest, and grassland in
Xinjiang were sourced from Cui et al. [42]. Below-ground biomass carbon density values
for water, construction land, and unused land were assumed to be 0 [43]. The mean annual
temperature in China was 9 ◦C, and in Xinjiang was 8.6 ◦C. The mean yearly precipitation
levels were 628 mm and 150 mm, respectively.

This research obtained land use carbon density data from previous studies and ad-
justed them with meteorological factors, yielding more accurate outcomes than using
national data directly. Variations in carbon density obtained by different studies should
be recognized. To minimize discrepancies, the selection of literature sources was carried
out very carefully. Where feasible, the same authors were selected when using the data to
ensure reliability and scientific rigor. Furthermore, literature data from regions with com-
parable climate conditions and geographical locations were enlisted. This study selected
literature data from China’s northern regions and excluded data from southern regions or
other countries. Therefore, this study’s calculated carbon density values are reasonable
and dependable (Table 2). For cross-referencing, our calculated carbon density data are
consistent with comparable studies, including Lu et al. [44] in Tianshan Mountains, Wang
et al. [45] in cultivated land, Hua et al. [46] in Kanas, Aishan et al. [47] in Tarim River
Watershed, Jia et al. [48] in desert, Cui et al. [42] in grassland, and Zhang et al. [49] in arid
western China.

Table 2. The carbon density of six land use types in Xinjiang (t/hm2).

Land Use Type Cabove Cbelow Csoil Source

Cultivated land 0.46 6.46 83.8 [35,36,41]
Forest 3.39 9.27 131.3 [35,36,50]

Grassland 2.82 6.92 80.0 [35,41,50]
Water 0.01 0 36.8 [36,50,51]

Construction land 0.02 0 71.4 [36,50,51]
Unused land 0 0.65 28.5 [50–52]

2.3. Methods
2.3.1. CA-Markov Model

This model describes the transition probability matrix to simulate prospective LUCC
maps over time [53]. The Markov approach illustrates the progression of a system from one
state to another, forecasting future changes in an event based on its current status at each
moment or period [54]. It is one of the crucial forecasting methods used in geographical
research. Assuming that there are n potential states for the predicted event, such as E1,
E2, . . ., En, let Pij represent the state transition probability from state Ei to state Ej, and the
matrix is constructed [55]:

Pij =


P11 P12 · · · P1n
P21 P22 · · · P2n

...
...

...
...

Pn1 Pn2 · · · Pnn

 (6)
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S(t + 1) = S(t)× Pij (7)

The transition probability matrix P is commonly referred to as the state transition
probability matrix. To compute this matrix, we must determine the transition probabilities
Pij (where i and j range from 1 to n) for each state to shift to any other state. In order to
obtain each Pij, we employ the concept of frequency approximate probability to calculate it.

2.3.2. InVEST Model

This model can estimate the amount of carbon held by different land use types [56].
Four main carbon pools are evaluated: above-ground biomass, below-ground biomass,
soil, and dead organic matter. The model estimates the current amount of carbon storage
by incorporating LUCC maps and storage values for these carbon pools. Such data can
formulate policies and management choices to enhance carbon sequestration and mitigate
climate change [57,58]. The equations are:

Ci = Ci_above + Ci_below + Ci_soil + Ci_dead (8)

Ctotal =
n

∑
i=1

Ci × Ai (9)

where Ci represents the average carbon density of land use type i, Ci_above represents the
above-ground biomass carbon density, Ci_below represents the below-ground vegetation
carbon density, Ci_soil represents the soil carbon density, and Ci_dead represents the carbon
density of dead organic matter. Additionally, Ctotal represents the total carbon storage,
while Ai represents the area of type i.

2.3.3. PLUS Model

The PLUS model is a widely adopted cellular automata (CA) framework for modeling
the dynamics of intricate LUCC systems [59]. The model consists of two main modules:
LEAS is a transformation rule mining component, and CARS is responsible for generating
land use patches [60]. Meanwhile, the CARS module functions as a cellular automata
(CA) tool that simulates spatial alterations under complex scenarios by influencing local
competition for land use to satisfy future demands [61].

2.3.4. Defining Development Scenarios

CLP (cultivated land protection): This policy analysis model focuses on cultivated
land protection. It primarily involves simulating and forecasting future land use changes to
develop strategies to safeguard cultivated land. The model can improve the comprehension
of various demands for cultivated land and ways to preserve it, thereby offering a scientific
basis for decision-making.

NIS (natural increase scenario): This scenario serves as a foundation for other projec-
tions, assuming that natural disasters or significant national policies and regulations will
not substantially influence future land use changes in Xinjiang. This scenario also assumes
that each land use type will continue to change following historical trends.

EDS (economic development scenario): Given that Xinjiang’s overall economic strength
is relatively weak and its economic development lags, the central challenge for its future
progress remains how to achieve economic advancement. This pivotal issue encompasses
the potential for growth within Xinjiang, focusing on fostering economic expansion and
optimizing economic benefits. Hence, the future land demand in Xinjiang should be
strategically planned to cater to socio-economic development needs. It includes ways to
safeguard ecologically important lands under continual economic development.

EPS (ecological protection scenario): In Xinjiang, ecological land conservation is
crucial for comprehensive ecological safeguarding. The forthcoming development of the
arid northwestern region must ensure the protection, restoration, and enhancement of the
terrestrial ecosystem sustainability. Future planning and development in Xinjiang should
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focus on maximizing its ecosystem service value, emphasizing prioritizing ecological
benefits.

We refer to reference [51] for different social and economic development goals and
government development plans. The four scenarios described above are set up as follows:
(1) NIS assumes that land use changes in 2020−2050 are not affected by major policies
and plans, and that the magnitude and trend of future land use changes continue the
evolution and development pattern of the 2000−2020 period. The land use raster number
for the next 30 years under the natural development scenario is obtained by running the
CA-Markov transfer probability matrix to obtain the number of land use grids under
the natural development scenario. (2) CLP: Based on the natural development scenario,
cultivated land is protected according to the “Outline of the National Overall Land Use Plan
(2006−2020) (https://www.gov.cn/guoqing/2008-10/24/content_2875234.htm, accessed
on 24 October 2008)” and “Overall Land Use Plan of the Xinjiang Uygur Autonomous
Region (2006−2020) (https://zrzyt.xinjiang.gov.cn/xjgtzy/ghjh/201806/3036bbc523c045
6cb43e41cd27e8bd06.shtml, accessed on 23 June 2018)” to ensure that cultivated land area
occupies a larger proportion in each land use category, and cultivated land will increase
by 1.2 times compared to the natural development scenario. (3) EPS prioritizes ecological
benefits, ensuring the quantitative advantages of the ecological land types of woodland,
grassland, and watershed, and restricting their large-scale and high-rate transformation to
other land types. Compared to the natural development scenario, the woodland, grassland,
and watershed areas have increased by 1.2, 1.2, and 1.6 times, respectively. (4) EDS: Based
on the natural development scenario, economic development is reasonably guided and
controlled according to relevant planning policies such as Xinjiang Uygur Autonomous
Region New Urbanization Plan (2014−2020) (https://xjdrc.xinjiang.gov.cn/xjfgw/c108
364/202108/1f41aafc062c4c10af324d0ba42f4c44.shtml, accessed on 30 August 2021) and
Xinjiang Uygur Autonomous Region Town System Plan (2021−2035) (https://www.gov.
cn/gongbao/2024/issue_11386/202406/content_6955759.html, accessed on 17 April 2024).
Compared to the natural development scenario, the urban construction land area will
grow moderately. However, disorderly expansion will be strictly controlled to avoid
excessive conversion to other land types, such as arable and forest land. Compared to the
natural development scenario, cultivated land, forest land, grassland, and water areas have
increased by 1.2, 1.2, 1.6, and 1.2 times, respectively.

We utilized the InVEST-PLUS model to incorporate LUCC data from Xinjiang covering
2000 to 2020, aiming to evaluate the fluctuations in carbon storage. We used different
scenarios for simulation in Xinjiang from 2020 to 2050, such as the CLP, NIS, EPS, and
EDS. Subsequently, we predicted carbon storage from 2030 to 2050. The study’s research
framework, methods, and procedures are depicted in Figure 2.
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3. Results
3.1. Analyzing Carbon Storage Under LUCC
3.1.1. LUCC Characteristics in Xinjiang

Figure 3 shows the land use remote sensing monitoring data for 2000, 2005, 2010, 2015,
and 2020, based on which we calculated a land use transfer matrix. Supplementary Table S1
shows the decline in forest, grassland, and unused land in 2000−2020 by 626.92, 13,786.30,
and 7700.77 km2, respectively. In contrast, cultivated land, water, and construction land
increased by 18,072.56, 855.4, and 3186.03 km2, respectively. For the past twenty years, the
land use transfer has occupied 28,546.57 km2. The significant changes primarily involved
the grassland donor converting to the cultivated land recipient. Cultivated land, the
dominant beneficiary, had an inflow about 11 times higher than the outflow (19,834.37 km2

vs. 1761.8 km2). Construction land received an inflow of 3189.01 km2, and cultivated land
was the main donor, contributing 822.87 km2. The forest outflow (995 km2) was slightly
higher than the inflow (368.07 km2). The forest outflow mainly became cultivated land
(830.22 km2), but a small amount of forest originated from cultivated land (54.71 km2).
Unused land had a slightly lower outflow (866.46 km2) than inflow (8567.23 km2), while it
also originated from cultivated land (41 km2). In addition, the area of water transfer was
small, without an obvious transfer pattern.
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Regarding transfers between land use types (Supplementary Figure S1), they mainly
included the Altai Mountains, the north and south slopes of the Tianshan Mountains, Ili
Valley, the north and south parts of the Tarim Basin, and the forest area of the Kunlun
Mountains. The Tianshan Mountain region was the most important area regarding the
transition from arable land to building land. There was a relatively large conversion of
forest to cultivated land in the Tianshan Mountains. Moreover, forest to grassland occurred
mainly in the Tarim Basin. Interestingly, the conversion of unused land to other land use
types was relatively high and concentrated in all five major regions. Other conversions,
including forest to cultivated land, construction land to water, and construction land to
grassland, predominantly occurred in scattered patch patterns. The conversion of forests
and grasslands to cultivated land was more serious, occurring mainly on the northern
and southern slopes of the Tianshan Mountains and in the northern and southern parts
of the Tarim Basin. The transfer of unused land to other categories was also notably
significant, primarily focused in the following key areas: the Altai Mountains, the northern
and southern slopes of the Tianshan Mountains, the Ili Valley, the northern and southern
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parts of the Tarim Basin, and the forests of the Kunlun Mountains. Other transfer types
were small and insignificant. These included converting forest land to construction land,
arable land to water bodies, and construction land to grassland, typically as small, scattered,
and dispersed patches.

The Sankey diagram was plotted to quantify the flow and diversity of land use changes
and depict the overall distribution of land use changes in 2000–2020 (Figure 4). The period
witnessed many conversions of grassland and unused land, where grassland was mainly
converted to unused land, cropland, and forest, and unused land was mainly converted
to grassland and cultivated land. The largest conversions involved cultivated land to
grassland, forest to grassland, and water to unused land. Adopting five-year intervals, land
use transfers occurred mainly in 2015–2020.
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3.1.2. Dynamics of Carbon Storage in 2000−2020

The calculated carbon storage changes only referred to converted areas, and uncon-
verted areas were excluded. The most significant carbon storage variations occurred in areas
used for construction and agriculture. The carbon storage in Xinjiang in 2000–2020 were
85.69 × 108, 85.79 × 108, 85.87 × 108, 86.01 × 108, and 86.71 × 108 t, and the carbon density
values were 52.55, 52.62, 52.67, 52.76, and 52.77 t/hm2, respectively. Over the past two
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decades, aggregate changes in carbon storage were insignificant, increasing to 1.01 × 108 t
and decreasing carbon density by 0.22 t/hm2. The 2000–2020 period recorded a total de-
crease of 9.7% in carbon storage, which increased by 0.1 × 108, 0.08 × 108, 0.14 × 108, and
0.7 × 108 t, while carbon density decreased by 1.03, 0.07, 0.05, and 0.01 t/hm2 in 2000–2005,
2005–2010, 2010–2015, and 2015–2020, respectively (Table 3).

Table 3. Impacts of land use change on carbon storage in Xinjiang from 2000 to 2020 (×108 t).

Year Cultivated
Land Forest Grassland Water Construction

Land
Unused

Land

2000 52.31 1.77 0.31 26.05 3.77 1.48
2005 52.27 1.77 0.33 25.86 4.11 1.46
2010 52.25 1.77 0.34 25.83 4.24 1.46
2015 52.16 1.79 0.44 25.45 4.73 1.45
2020 52.49 1.86 0.48 25.68 4.75 1.46

Carbon storage across Xinjiang maintained a relatively steady spatial configuration
from 2000 to 2020 (Figure 5). Carbon source areas were mainly in the Altai Mountains
(a-1)–(e-1), Tianshan Mountains (b-1)–(b-5), Yili Valley (c-1)–(c-5), Kunlun Mountains
(e-1)–(e-5), and the outer edge of the oasis in the Tarim Basin (d-1)–(d-5). These areas
were situated close to locations with strong economic activities and frequent land use
conversions, making it difficult to form carbon sinks. On the other hand, carbon sinks
were mainly located in unused desert and Gobi areas, resulting in less pronounced carbon
storage changes. Low carbon storage was predominantly found in mountainous areas,
water bodies (lakes), and urban construction sites. Medium carbon storage was primarily
found in desert areas with harsh environments along mountain ranges, basins, and river
valleys. High carbon storage was concentrated mainly in high-elevation mountain forest
areas.
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3.1.3. Choosing the Most Suitable Grid Scale Using Binary Logistic Regression

The factors shaping land use in Xinjiang were intricate and varied. The drivers
should be judiciously assessed to enhance the predictive precision of the PLUS model and
simulation results. LUCC was complex, requiring different drivers for various regions
and times. Therefore, driver selection should follow some guiding principles, consult the
literature, and consider actual situations in Xinjiang. In Xinjiang, eleven factors that drive
LUCC were selected based on natural, socio-economic, and accessibility criteria (Table 1)
based on the following considerations: (1) consistency of factor data; (2) quantifiability
of factors; (3) significant spatial differences and correlations; and (4) completeness of
factor selection [62,63]. The layout of the specific determinants is shown in Supplementary
Figure S2.

This research employed binary logistic regression, which surpasses traditional logistic
regression in terms of accuracy [64]. The model was implemented for each land use
category from 2000 to 2020, and ROC curves were used to test the drivers’ statistical
significance. Considering previous research findings and Xinjiang’s realities, in this study,
logistic regressions were conducted on eleven drivers of six land use types at five regional
scales: 1000 m × 1000 m, 2000 m × 2000 m, 3000 m × 3000 m, 4000 m × 4000 m, and
5000 m × 5000 m. The results of this study are summarized below. The ROC values for
each land use type at different scales are presented in Supplementary Table S2. In light of
the results, the best simulation scale was determined to be 4000 m × 4000 m, the regression
coefficient file was established, and the simulation was conducted.

3.2. Accuracy Validation of the Markov-PLUS Model

This study enlisted the Markov model to conduct simulations. The simulated values
were compared against the actual ones to determine the relative error rate. Supplementary
Table S3 presents results indicating relative error rates of about 1%, which implies a
close agreement between real-world conditions and forecasted outcomes. To verify the
model’s precision, the 2010 and 2020 land use data in Xinjiang were used as the first
and last period data, respectively. Nine indicators were selected as driving factors to
obtain the development probability of each category through the LEAS module. Using the
development probability results, the CARS module was applied to simulate the spatial
distribution of land use in 2020 based on the 2010 land use data. The simulated outcomes
for 2020 LUCC were compared with the actual LUCC data for that year. The Kappa
coefficient acquired through precision validation was 0.8. The excellent simulation outputs
and accuracy suggested that the model could be employed to reliably predict future LUCC
distribution in Xinjiang. However, policy factors could have a significant influence on land
use changes. Future studies should consider integrating quantitative policy indicators into
model calculations to improve the accuracy of predictions.

3.3. Forecasting Upcoming Land Use Distributions Using the PLUS Model
3.3.1. Analyzing Carbon Stock Changes Under Four Scenarios in 2030−2050

Using the Markov and PLUS models and a land use conversion matrix, we fore-
casted the future land use configurations of Xinjiang under CLP, the NIS, EDS, and EPS in
2020−2050 (Figure 6). The simulated land use and carbon storage data are summarized in
Table 4. By combining our findings with previous studies, valuable insights were obtained.

Using the LUCC data from 2020, the Markov model predicted LUCC in 2030−2050
under various scenarios (Figure 6). There will be a continued decline in cropland, forests,
and water resources by 2050 under the CLP scenario compared to 2030, with a reduction of
708.48 km2, 1539.18 km2, and 25,034.76 km2 in cultivated land, respectively. Regarding the
transfer direction, grassland, construction, and unused land will be reduced by 4263.75 km2,
22,329.18 km2, and 689.49 km2, respectively (Figure 7). In the future, forests will mainly
be converted to grassland; grasslands will change into cultivated land, forest, water, and
construction land. Under CLP, the projected land use change trends from 2020 to 2050 are
similar to 2000−2020.
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Figure 6. The alteration in carbon storage distribution throughout the Xinjiang region is projected
from 2020 to 2050. Notes: (a-1–a-12) Altai Mountains’, (b-1–b-12) Tianshan Mountains, (c-1–c-12)
Ili Valley, (d-1–d-12) Kunlun Mountains, and (e-1–e-12) Tarim Basin. Note: Different color codes
represent scenario changes more distinctly, allowing for a clearer visualization of carbon storage
trends.
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Table 4. Estimates of the fluctuation in carbon storage due to LUCC from 2030 to 2050 under various
scenarios (×106 t).

Scenario
Land Use Type

Cultivated Land Forest Grassland Water Construction Land Unused Land

2030 CLP 51.86 1.94 0.41 25.23 5.30 1.38
2030 NIS 51.86 1.94 0.41 25.23 5.30 1.38
2030 EPS 51.93 1.90 0.48 25.47 4.88 1.45
2030 EDS 51.91 1.85 0.59 25.15 5.18 1.40
2040 CLP 51.93 1.85 0.63 25.07 5.18 1.45
2040 NIS 51.94 1.85 0.59 25.09 5.21 1.45
2040 EPS 50.92 1.94 0.56 25.74 5.38 1.27
2040 EDS 51.88 1.86 0.59 25.20 5.23 1.40
2050 CLP 52.00 1.90 0.20 26.22 4.23 1.41
2050 NIS 51.83 2.02 0.18 26.52 4.11 1.34
2050 EPS 51.99 1.85 0.59 25.19 5.19 1.40
2050 EDS 52.63 1.87 0.60 25.50 5.25 1.42

Remote Sens. 2024, 16, x FOR PEER REVIEW  15  of  23 
 

 

 

Figure 7. Chord diagrams illustrating the projected LUCC changes in Xinjiang from 2020 to 2050 (unit 

km2). 

3.3.2. Impact of Land Use Change on Carbon Storage 

Throughout the five intervals of 2000, 2005, 2010, 2015, and 2020, it was noted that 

carbon storage in Xinjiang’s six major land types generally exhibited a trend towards sta-

bilization (Table 3). Regarding alterations in LUCC, cultivated land and water comprised 

61% and 29% of the mean total carbon storage, respectively. Construction land accounted 

for 5.4%, while forests and unused lands had the smallest contributions. The land use re-

sults in 2030 were projected for CLP, the NIS, EPS, and EDS, for which the carbon storage 

in Xinjiang for 2030 was 86.11 × 108, 86.07 × 108, 86.01 × 108, and 86.11 × 108, respectively, 

and the carbon densities were 52.9, 52.88, 52.9, and 52.9 Mg·hm−2, respectively. For 2040, 

the carbon storage was 86.12 × 108, 86.15 × 108, 85.80 × 108, and 85.96 × 108, and the carbon 

densities were 52.91, 52.93, 52.71, and 52.81 Mg·hm−2. For 2050, the carbon storage was 86 

× 108, 87.26 × 108, 86.2 × 108, 87.38 ×108, and 87.38 × 108, respectively, and the carbon densi-

ties were 52.84, 53.61, 52.96, and 53.68 Mg·hm−2, respectively. 

Compared with 2000, the four scenario projections for 2030 will generate an increase 

in total carbon storage by 0.42 × 108 t (CLP), 0.38 ×108 t (NIS), 0.41 × 108 t (EPS), and 0.42 × 

108 t (EDS) (Table 4). Compared with 2000, in 2040, the total carbon storage will increase 

by 0.44 × 108 t (CLP), 0.46 × 108 t (NIS), 0.11 × 108 t (EPS), and 0.27 × 108 t (EDS). Compared 

with 2000, in 2050, the total carbon storage will increase by 0.31 × 108 t (CLP), 1.58 × 108 t 

(NIS), 0.51 × 108 t (EPS), and 1.69 × 108 t (EDS). 

Among the various LUCC types, cultivated land constituted the largest carbon pool, 

representing an average of 61% of the cumulative carbon storage. The other LUCC types 

followed in descending order of carbon storage, namely water > forest > unused land > 

Figure 7. Chord diagrams illustrating the projected LUCC changes in Xinjiang from 2020 to 2050
(unit km2).

Under the NIS, cultivated land and unused land will decrease by 2050 compared
to 2020. Cultivated land, grassland, water, and unused land are projected to decrease
by 69 km2, 2102.67 km2, 27,129.24 km2, and 606.42 km2, respectively. Forested area and
construction land will expand by 1727.01 km2 and 48,527.01 km2, respectively (Figure 6).
Concerning the land transfer direction (Figure 7), The bi-directional conversion between
cultivated land and grassland will persist, with the transformation of cultivated land into
unused land continuing to be predominant. The increase in the built-up land will mainly
originate from arable land, grassland, and unused land, in addition to the fact that unused
land will be mostly converted into arable land and grassland.
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Under the EPS, the reductions in cultivated land, grassland areas, and construction
land are 921.96 km2, 5583.96 km2, and 14,345.1 km2, respectively. On the other hand, the
expanse of forest, water, and unutilized lands expands by 1368.45 km2, 18,992.16 km2, and
490.41 km2, respectively (Figure 6). This means that implementing ecological conservation
efforts and expanding forest areas are key to enhancing carbon stock. However, under the
existing conditions, the only way to ensure arable land holdings and the demand for land
for construction is to upgrade large tracts of grassland and unused land to forest, while
at the same time expanding the water bodies. Regarding spatial distribution, the pattern
mirrors that of the NIS, but compared with it, the number of areas with high carbon density
increases.

In the accelerated EDS, the increase in unused land is more significant than in the NIS.
The area of forest cover has been significantly reduced to 862.1 km2. Meanwhile, there
is only a slight rise in other land areas, the reduction in farmland is not as pronounced
as in the NIS, and the increase in unused land is transformed by land types other than
cultivated land. The decrease in carbon storage is smaller than in the NIS, but the difference
in the total change amount is insignificant. Comparative analyses indicate that despite
the constraints of a very rapid EDS aimed at limiting and accelerating land expansion for
construction, the difference in the spatial distribution of the total amount of land is not
significantly different from that of the NIS.

3.3.2. Impact of Land Use Change on Carbon Storage

Throughout the five intervals of 2000, 2005, 2010, 2015, and 2020, it was noted that
carbon storage in Xinjiang’s six major land types generally exhibited a trend towards
stabilization (Table 3). Regarding alterations in LUCC, cultivated land and water comprised
61% and 29% of the mean total carbon storage, respectively. Construction land accounted
for 5.4%, while forests and unused lands had the smallest contributions. The land use
results in 2030 were projected for CLP, the NIS, EPS, and EDS, for which the carbon storage
in Xinjiang for 2030 was 86.11 × 108, 86.07 × 108, 86.01 × 108, and 86.11 × 108, respectively,
and the carbon densities were 52.9, 52.88, 52.9, and 52.9 Mg·hm−2, respectively. For 2040,
the carbon storage was 86.12 × 108, 86.15 × 108, 85.80 × 108, and 85.96 × 108, and the
carbon densities were 52.91, 52.93, 52.71, and 52.81 Mg·hm−2. For 2050, the carbon storage
was 86 × 108, 87.26 × 108, 86.2 × 108, 87.38 ×108, and 87.38 × 108, respectively, and the
carbon densities were 52.84, 53.61, 52.96, and 53.68 Mg·hm−2, respectively.

Compared with 2000, the four scenario projections for 2030 will generate an increase
in total carbon storage by 0.42 × 108 t (CLP), 0.38 ×108 t (NIS), 0.41 × 108 t (EPS), and
0.42 × 108 t (EDS) (Table 4). Compared with 2000, in 2040, the total carbon storage will
increase by 0.44 × 108 t (CLP), 0.46 × 108 t (NIS), 0.11 × 108 t (EPS), and 0.27 × 108 t (EDS).
Compared with 2000, in 2050, the total carbon storage will increase by 0.31 × 108 t (CLP),
1.58 × 108 t (NIS), 0.51 × 108 t (EPS), and 1.69 × 108 t (EDS).

Among the various LUCC types, cultivated land constituted the largest carbon pool,
representing an average of 61% of the cumulative carbon storage. The other LUCC types
followed in descending order of carbon storage, namely water > forest > unused land
> construction land > grassland. Compared to 2020, there was a net growth in carbon
storage within forests, grasslands, and construction lands in 2030. In contrast, arable land,
water, and unused land decreased. Geospatially, the regions with high carbon density in
Xinjiang tended to spread, maintaining a distribution pattern largely similar to that of 2020.
Furthermore, the total carbon storage for the four scenarios in 2040 and 2050 showed an
upward trajectory. Cropland remained the largest carbon pool among the different LUCC
types, and the order of carbon storage for the other LUCC types remained unchanged.
Additionally, carbon intensity increased in 2050 compared to 2040 for all four scenarios,
showing a general uptrend from 2030 to 2050.

Under the CLP scenario, the transformations in cultivated land and grassland resemble
those of the NIS, and construction land will diminish compared to the NIS. The cultivated
land increase is attributed to conversion from water and unused land. These changes imply
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that restrictions on construction land expansion can protect cultivated land, contrasting
with a sharp cultivated land decline under the NIS. Compared to 2020, carbon storage is
expected to decline by 0.6 × 108 t in 2030. In addition, the total carbon storage across the
four scenarios in 2040 and 2050 will be reduced by 0.61 × 108 and 0.5 × 108 t, respectively,
compared with 2020. This result indicates an improvement over the NIS due to reduced
forest land leading to carbon losses.

Under the NIS, the shifts in land use categories between 2030 and 2050 will parallel
those observed from 2000 to 2020. By 2030, a substantial reduction in cultivated land is
anticipated, whereas an increase is expected in grasslands, water, and particularly in built-
up areas. The conversion of cultivated land to construction land remains the primary land
use alteration. Accordingly, the carbon stocks in Xinjiang’s arable land, forests, watersheds,
and unused land will be reduced by 0.58 × 108, 0.02 × 108, 0.53 × 108, and 0.06 × 108 t,
respectively, and the total carbon stock will be reduced by 0.64 × 108 t, respectively. By
2050, carbon storage in cultivated land, grassland and construction land will experience
an increment of 0.01 × 108, 0.11 × 108, and 0.43 × 108 t, respectively. The decrease in
cultivated land results in a decline in carbon storage by 0.65 t and 0.57 t in 2040 and 2050,
respectively, compared to 2020 under the four considered scenarios.

Under the EPS, there will be a substantial rise in forest and water areas relative to
the NIS. The forest expansion is mainly caused by conversion from cultivated land and
grassland. The overall carbon storage will grow by 0.6 × 108 t compared to 2020. In addition,
the cumulative carbon storage for the four scenarios is projected to fall by 0.92 × 108 and
0.51 × 108 t in 2040 and 2050, respectively, compared to 2020. The geographical distribution
of carbon stocks remains consistent with the natural variability scenario, but there is
an increase in areas of high carbon density compared to the natural variability scenario.
This result implies that the advancement of ecological conservation practices and the
augmentation of ecological components, including forests and aquatic systems, positively
contribute to the carbon sequestration capacity of terrestrial ecosystems.

In contrast, there will be a less pronounced reduction in cultivated land compared to
the NIS. Total carbon stocks are projected to decrease by 0.61 × 108 t, relatively smaller than
the NIS, but the difference is insignificant. Furthermore, total carbon storage is projected
to decrease by 0.75 × 108 t in 2040 and increase by 0.67 × 108 t in 2050 under the four
scenarios, compared with 2020. Despite the constraints of fast economic development and
accelerated construction land expansion, little difference from the NIS is observed. This
result indicates that the region has undergone rapid urban economic development under
the NIS.

Comparing the four scenarios, it is observed that CLP will have the largest carbon sink
area in 2030, trailed by the EDS and EPS, while the NIS is the smallest. In 2040, the NIS will
have the largest carbon sink area, followed by CLP and the EDS, while the EPS will be the
smallest. In 2050, the EDS will have the largest carbon sink area, succeeded by the NIS and
EPS, with CLP having the smallest. The key carbon sinks in Xinjiang are located in the Altai
Mountains, the northern and southern slopes of the Tianshan Mountains, the Ili Valley, the
northern and southern parts of the Tarim Basin, and the forested areas within the Kunlun
Mountains. The carbon sinks significantly outnumber the carbon source areas, mainly in
mountain ranges and places with abundant vegetation surrounding the basins. This pattern
suggests the area’s strong carbon storage capacity and stable ecological development.

3.3.3. Temporal and Spatial Dynamics of Carbon Storage in Response to Land Use Change

Figure 5 shows areas with carbon storage changes in 2000–2020. They are predomi-
nantly found in the northern Altai Mountains, the north and south slopes of the Tianshan
Mountains, Ili Valley, Tarim Basin, and Kunlun Mountains. This pattern coincides with the
distribution of high carbon storage, with intertwined and overlapping carbon source and
sink areas in the northern foothills of the Tianshan Mountains and the periphery of the
oases in the Tarim Basin. These areas are close to intense human and economic activities
and frequent land use conversions that make it difficult to form carbon sinks. Significant
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alterations in carbon storage are discernible for the four land development scenarios pro-
jected from 2030 to 2050 (Table 4). This result suggests a change in carbon storage due to
drivers, with an overall upward trend. In summary, the distribution of high-to-medium
carbon storage across Xinjiang is mainly located in the middle, and low carbon storage
across Xinjiang is closely linked to land use patterns and driving factors. Carbon storage is
primarily found in dense vegetation surrounding mountain ranges and basins, indicating
substantial regional carbon storage potential and a stable ecosystem state.

In Figure 8, the carbon stock hot spots under different scenarios in Xinjiang in 2030 are
almost the same, and they are all distributed in the Aksu region in southern Xinjiang, and
the cold spots are distributed in high-altitude alpine areas as well as in desert areas. The
distribution of carbon stock hot spots under different scenarios in 2040 varies greatly, and
Xinjiang’s vast unutilized land area will become a carbon stock hot spot under CLP and the
NIS. In the EPS, the carbon stock hot spots are located in forested areas; in the EDS, the
carbon stock hot spots are very small in extent and almost disappear, except for some oasis
and grassland areas. In 2050, the distribution of carbon stock hot spots under all scenarios
will be small, with the hot spots under CLP and the EPS distributed in the form of patches
in the oasis areas in southern Xinjiang and the grassland areas in the north, and the main
hot spots under the NIS and EDS concentrated in the forested areas in northern Xinjiang,
the grassland areas in the Yili, and the main oasis areas in the Ring Tarim Basin.

Remote Sens. 2024, 16, x FOR PEER REVIEW  18  of  23 
 

 

 

Figure 8. The hot and cold spots of carbon storage across CLP, the NIS, EPS, and EDS from 2030 to 2050. 

4. Discussion 

4.1. Carbon Storage Distribution Patterns Associated with Land Use 

The validation  results exhibit a  strong alignment with  the outcomes of earlier  re-

search. Our analysis found that low carbon storage is scattered around mountain ranges 

instead of deserts and undeveloped land such as the Gobi. This pattern is intimately con-

nected to land use classifications, the mountainous terrain, and the distinct stratification 

of vegetation across the elevational gradient. The general landscape has a characteristic 

fabric, such as glaciers and snow at mountain tops, woodlands on mountain slopes, grass-

lands in the foothills, and urban development on gentle slopes of the valleys. This natural 

configuration has generated a carbon  storage pattern anchored by mountain  ranges  to 

display a nested distribution of high and low values. The study area embodies beneficial 

carbon sinks in historical and future periods, but the arid climate and fragile ecology re-

strict its carbon sequestration capacity compared with humid regions. Therefore, studying 

the  status  of  carbon  sinks  in Xinjiang  and  the  northwest  arid  region  is  significant  to 

China’s achievement of carbon peaking and neutrality. 

4.2. Constraints to Accurate Assessment of Carbon Storage 

Given the intricate and changeable nature of LUCC, certain uncertainties in carbon 

storage distribution are inevitable. Initially, carbon storage simulations are significantly 

Figure 8. The hot and cold spots of carbon storage across CLP, the NIS, EPS, and EDS from 2030 to
2050.



Remote Sens. 2024, 16, 4439 17 of 22

4. Discussion
4.1. Carbon Storage Distribution Patterns Associated with Land Use

The validation results exhibit a strong alignment with the outcomes of earlier research.
Our analysis found that low carbon storage is scattered around mountain ranges instead of
deserts and undeveloped land such as the Gobi. This pattern is intimately connected to
land use classifications, the mountainous terrain, and the distinct stratification of vegetation
across the elevational gradient. The general landscape has a characteristic fabric, such as
glaciers and snow at mountain tops, woodlands on mountain slopes, grasslands in the
foothills, and urban development on gentle slopes of the valleys. This natural configuration
has generated a carbon storage pattern anchored by mountain ranges to display a nested
distribution of high and low values. The study area embodies beneficial carbon sinks in
historical and future periods, but the arid climate and fragile ecology restrict its carbon
sequestration capacity compared with humid regions. Therefore, studying the status of
carbon sinks in Xinjiang and the northwest arid region is significant to China’s achievement
of carbon peaking and neutrality.

4.2. Constraints to Accurate Assessment of Carbon Storage

Given the intricate and changeable nature of LUCC, certain uncertainties in carbon
storage distribution are inevitable. Initially, carbon storage simulations are significantly
affected by LUCC. We selected 11 drivers. However, because of the limitations and param-
eter selection in the land use simulation model (PLUS), potential errors may arise in the
final simulation results. Additionally, while the effects of policy and institutional elements
on LUCC can be significant, they are challenging to measure quantitatively [50]. Secondly,
changes in temperature, rainfall, altitude, and environmental conditions in different re-
gions can affect carbon density and thus reduce the accuracy of carbon storage assessments.
Thirdly, carbon storage was calculated using the PLUS-InVEST model, which ignores other
factors, such as photosynthetic rate and soil microbial activity, which strongly influence
carbon sinks [7]. Fourth, while some studies have examined the relative impact of LUCC
and climate on terrestrial ecosystems, incorporating LUCC policies into diverse climate
models remains a future challenge [65,66]. Consequently, our future research efforts will
focus on a more comprehensive assessment of the impacts of land use change on ecosystem
services and their cumulative effects. We will also explore the balance required between
multiple ecosystem services under different potential future scenarios [67]. Future research
could also further explore the dynamic impact of factors like microbial activity and soil
characteristics on carbon storage, improving the precision of carbon stock assessments.

4.3. Policy Implications

This research selected Xinjiang as our study area due to its extensive land area and
natural limitations typical of China’s northwest arid region. Additionally, it is situated
at the core area of the Belt and Road national policy with a high development potential.
Xinjiang is undergoing rapid urbanization, posing significant challenges to sustaining
terrestrial ecosystem services [68]. Estimating forthcoming changes in LUCC and their
potential ecological consequences under various developmental scenarios aids in compre-
hending and mitigating these effects. However, a decline in carbon storage has occurred,
predominantly due to the degradation of grasslands. Considering that carbon stocks will
decrease under the CLP scenario, Xinjiang should appropriately limit the expansion of
cultivated land and reduce the encroachment of cultivated land into forest land in the
future. CLP is the scenario with the largest future increase in carbon stocks. Therefore,
it is essential to expand ecological restoration initiatives like converting cultivated land
back to forest and grassland [69], and the “Three North Shelter Forests” program [70]. Di-
verse afforestation methods can be combined with tree irrigation and grassland to enhance
carbon sequestration capacity. The government can conduct more research to improve
ecological restoration and increase carbon sinks in the ecosystem. In order to cope with
changes in carbon storage under different scenarios, it is recommended that layered and
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regionalized ecological protection and land management strategies be adopted in accor-
dance with the ecological characteristics and land use status of different regions. This
includes implementing targeted ecosystem restoration measures in specific regions and
optimizing land use practices (returning farmland to forests, afforestation, land salinization
management, wind and sand stabilization, etc.) to enhance the carbon storage capacity of
soil and vegetation. In addition, systematic carbon stock monitoring and land use scenario
simulation projections can provide a scientific basis for carbon neutralization targets under
different ecological environments. This will ultimately lead to a sustained increase in
carbon stocks and promote the realization of the regional carbon neutrality goal, while at
the same time facilitating sustainable ecological protection and economic development.

5. Conclusions

From the findings, the following conclusion can be made:
Within this investigation, we modeled the prospective LUCC and alterations in ecosys-

tem carbon storage in Xinjiang, China, spanning the 2020−2050 period across four diverse
developmental scenarios. We accomplished this by establishing an integrated framework
that amalgamates the Markov, InVEST, and PLUS models to precisely simulate shifts in
carbon reserves under varying scenarios. The forecasted land use transformations are
contingent upon the four simulated climate scenarios. The framework of this research
provides innovative perspectives that can assist decision-makers in their management
choices and support China in reaching its “carbon neutrality” objective while enhancing
ecosystem services in additional urban areas.

Carbon storage experienced a continuous and steady rise in 2000−2020, with a net
increase of 1.03 × 108 t. Compared to 2020, carbon storage in the three developmental
scenarios projected for 2050 will substantially increase. Carbon storage decreased by
a small amount of 0.71 × 108 under the CLP scenario, while the NIS, EDS, and EPS
increased the carbon storage by 6.37 × 108, 7.78 × 108, and 8.49 × 108 t, respectively.
The study demonstrated that carbon storage simulations under different scenarios could
understand the underlying factors and limitations and offer hints to achieve sustainable
development in Xinjiang and other similar places. Future research can assess district-
specific scenarios, improve analytical methods, and develop a more objective evaluation of
terrestrial ecosystems.

The study area has sustained or created some carbon sinks, which can be further
improved for carbon storage. Nonetheless, compared with the humid southern regions, the
capacity for carbon sequestration in the sink areas of Xinjiang is restricted by its arid climate
and fragile ecology. Even though the ecosystems in arid zones are more susceptible to
damage, the impacts of LUCC are often overlooked due to the common misconception that
their ecosystems are less active and, hence, less susceptible to damage. Ignoring human
disruptions on the carbon cycle in the northwest arid region may lead to mistaken decisions
and actions. A detailed analysis of the human impacts on ecosystems and the carbon cycle
should dispel this misunderstanding.

Compared to the southern humid region of China, Xinjiang’s ecosystem carbon seques-
tration capacity is relatively limited due to its arid climate, which is not conducive to the
growth of large plants or dense vegetation. Consequently, this study offers pertinent contri-
butions to the comprehensive appraisal of carbon storage at the county level. Nevertheless,
additional investigations are warranted to expand on these outcomes due to constraints in
land use/land cover classification techniques, driving factors, model precision, and carbon
density parameters.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16234439/s1, Figure S1: Analysis of the spatial dynamics of
land-use changes in Xinjiang from 2000 to 2020: (a) Altai Mountains, (b) Tianshan Mountains, (c) Ili
Valley, (d) Kunlun Mountains, and (e) Tarim Basin; Figure S2: Spatial patterns of the LUCC drivers in
Xinjiang; Table S1: Land-use transition matrix in Xinjiang from 2000 to 2020 (×102 km2); Table S2:
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ROC at different scales; Table S3: The outcome of the Markov prediction and corresponding deviation
(×104 km2).
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