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Abstract: Detailed Land-Use and Land-Cover (LULC) information is of pivotal importance in, e.g.,
urban/rural planning, disaster management, and climate change adaptation. Recently, Deep Learning
(DL) has emerged as a paradigm shift for LULC classification. To date, little research has focused
on using DL methods for LULC mapping in semi-arid regions, and none that we are aware of have
compared the use of different Sentinel-2 image band combinations for mapping LULC in semi-arid
landscapes with deep Convolutional Neural Network (CNN) models. Sentinel-2 multispectral image
bands have varying spatial resolutions, and there is often high spectral similarity of different LULC
features in semi-arid regions; therefore, selection of suitable Sentinel-2 bands could be an important
factor for LULC mapping in these areas. Our study contributes to the remote sensing literature by
testing different Sentinel-2 bands, as well as the transferability of well-optimized CNNs, for semi-arid
LULC classification in semi-arid regions. We first trained a CNN model in one semi-arid study site
(Gujranwala city, Gujranwala Saddar and Wazirabadtownships, Pakistan), and then applied the
pre-trained model to map LULC in two additional semi-arid study sites (Lahore and Faisalabad city,
Pakistan). Two different composite images were compared: (i) a four-band composite with 10 m
spatial resolution image bands (Near-Infrared (NIR), green, blue, and red bands), and (ii) a ten-band
composite made by adding two Short Wave Infrared (SWIR) bands and four vegetation red-edge
bands to the four-band composite. Experimental results corroborate the validity of the proposed
CNN architecture. Notably, the four-band CNN model has shown robustness in semi-arid regions,
where spatially and spectrally confusing land-covers are present.

Keywords: CNN; LULC classification; semi-arid regions; Sentinel-2

1. Introduction

Detailed LULC information over large areas is essential for a wide range of urban and
natural resource management issues, including urban area mapping [1,2], monitoring urban
expansion, and infrastructure planning [3]. Remote-sensing images are the most important
data sources for accurate LULC information [4,5], which provide efficient information about
the Earth’s surface at a low cost [6]. Remote-sensing satellites range from coarse spatial
resolution (MODIS and AVHRR, etc.) to medium-resolution (Sentinel-2 and Landsat-8, etc.)
and high-resolution (GeoEye, Ikonos, QuickBird, Gaofen, etc.) satellites [7–10]. However,
it is often expensive to acquire high-resolution remote-sensing satellite imagery for large
areas (most is commercial imagery) [11,12], and there may not be recent cloud-free imagery
available for a site of interest due to the infrequent acquisition of high-resolution imagery
(compared to medium-resolution imagery).

Medium-resolution remote-sensing imagery is perhaps the most important data source
for generating maps of LULC over large areas due to its ability to provide near-global
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coverage of the Earth’s surface at a high frequency, e.g., every 5 or 8 days for Sentinel
(-2a/2b) and Landsat (-8/-9) satellite data, respectively [12,13]. LULC classification in
arid/semi-arid regions is a challenging task due to high interclass spectral similarity of
urban and non-urban (e.g., bare land or fallow cropland) LULC features [1,14].

Freely available medium-resolution remote-sensing imagery (e.g., 10–60 m resolution
Sentinel-2 data) is a valuable data source for LULC classification of semi-arid regions due
to its low cost and high temporal resolution. There is a lack of studies on the utilization
of medium-resolution remote-sensing data for mapping LULC in semi-arid regions (i.e.,
spatially and spectrally similar LULC features), particularly over large geographic areas,
e.g., at city, provincial, and national scales. Thus, accurate LULC classification over large
semi-arid areas is still a challenge for the remote-sensing community.

The remote-sensing community has developed and applied many different classi-
fication methods for LULC mapping, ranging from conventional methods based on im-
age statistics—e.g., Bayesian, Maximum Likelihood, or ISO Clustering methods [15]—
to advanced Machine Learning (ML) methods, such as Support Vector Machine (SVM),
Light Gradient Boosting Machine (LGBM) [5,16], Random Forest (RF), single Decision
Trees (DTs), and K-nearest neighbors (KNN) [6,17,18]. More recently, DL methods—e.g.,
CNN [8,19–21]—have also been applied for LULC mapping in a variety of different types
of landscapes. CNNs have also been used for various other applications in built-up areas,
including analysis of concrete (crack detection and torsional capacity) [22]. Notably, these
DL-based LULC classification methods have often outperformed the conventional and ML
classification methods when there is a sufficient amount of training data available (while
ML approaches may give similar or superior performance when the training data is very
limited) [23]. A major advantage of DL approaches is their ability to automatically learn
the most useful spectral and contextual features from the training set to help distinguish
between the spectrally similar LULC classes [24,25]. With ML approaches, this can often be
a complex and time-consuming process requiring the use of feature-selection algorithms
and/or expert knowledge/trial-and-error [26].

Unfortunately, there are few studies on the utilization of medium-resolution remote-
sensing data for mapping of large semi-arid regions using DL models. As one example, [27]
introduced a new type of Deep CNN (DCNN) for LULC classification using medium-
resolution remote-sensing imagery (Landsat-8). In this study, seven different LULC classes
comprising cultivated land, forest, grassland, wetland, water, construction land and bare
land were considered. The DCNN model achieved an overall accuracy of 82%, and im-
proved accuracy by 5% and 14% as compared to SVM and MLC classifiers, respectively.
In [28], researchers designed a patch-based CNN system for the classification of Landsat
satellite imagery into eight LULC classes (water, agriculture, forested wetland, barren
land, trees, high- and low-intensity urban, and non-forested wetland), and found that the
patch-based CNN achieved an overall accuracy of 89.26%, outperforming a pixel-based
CNN, a pixel-based NN, and a patch-based NN classifier by a margin of 24.23%, 24.36%,
and 11.52%, respectively. The proposed patch-based architecture is complex; additionally,
a large number of training and testing samples are required to reduce overfitting and
underfitting (the proposed model is trained on 150,000 iterations, which requires much
computational power and time).

In Song et al. [9], researchers introduced a Lightweight CNN (LCNN) for the LULC
classification of medium-resolution remote-sensing imagery (Landsat-8) and found that
the LCNN had significantly higher accuracy than the pixel-based SVM, RF, and KNN
algorithms. The proposed LCNN model attained a high classification accuracy with fewer
training samples and lower computational power than the traditional CNNs. In Hervadi
and Miranda [29], the authors conducted a study on LULC classification of Sentinel-2
imagery using CNN. In this study, different texture features (e.g., homogeneity, rectangular
fit, shape, and brightness) and vegetation indices were used along with reflectance data for
LULC classification. A comparative analysis of CNN was performed with a Gradient Boost-
ing Machine (GBM) algorithm. CNN achieved 0.98 mean training and testing accuracy after
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using different texture features and vegetation indices along with Sentinel-2 data. However,
it is a very time-consuming task to extract the texture features and vegetation indices.

While several DL-based methods have been proposed for LULC classification using
medium-resolution remote-sensing images, many knowledge gaps remain. For example,
there is still little information on the utility of combining/utilizing different spectral bands
of medium-resolution satellite sensors for LULC mapping, or on mapping of LULC in
arid/semi-arid regions using DL methods. To the best of our knowledge, there is no
detailed study involving the use of DL methods to classify LULC in semi-arid regions
using Sentinel-2 imagery. This is a significant knowledge gap due to the high potential of
Sentinel-2 data for LULC mapping over wide geographic areas, as Sentinel-2 has 13 spectral
bands with spatial resolutions ranging from 10–60 m and a revisit time of only 5 days. It
would be interesting to further explore the potential of Sentinel-2 data to evaluate, e.g.,
which spectral band combinations yield better classification results. Therefore, the aim of
this scientific research is as follows:

• To apply a 2D CNN architecture with fixed hyperparameters for LULC classification in
semi-arid regions using medium-resolution remote-sensing imagery (Sentinel-2 data).

• To test the transferability of CNNs for semi-arid LULC classification in semi-arid
regions.

• To evaluate and analyze the spectral bands, which can provide maximum class separa-
bility, minimize spectral confusion, and reduce the required computational power.

Overview of DL CNNs

CNN is a class of feed-forward neural networks. Traditional ML algorithms need
extracted features for classification, but the CNN automatically learns features. It automati-
cally learns complex information from data and arranges it from low-level to high-level.
It was originally designed to process data in the form of multiple arrays. Remote-sensing
image data is in the form of multiple arranged arrays of pixels; this is why CNN is selected
for remote-sensing image classification [30]. It extracts information from data in multiple
stages. Each stage consists of, usually, three types of layers: (1) convolutional layers, (2)
non-linear layers, and (3) pooling layers. These layers are connected to one or more fully
connected layers [26]. The deeper CNN architecture has dropout and batch normalization
layers [7].

The convolutional layers take three-dimensional (3D) input data (x × y × f), where ‘x’
and ‘y’ are the image patch dimensions and ‘f’ is the number of features. The convolutional
filters extract high-level information from the training data by moving the window (kernel).
The output is a 3D shape (x× y× z) composed of a ‘z’-feature map of size x × y. The point-
wise nonlinear activation function layer is applied to each component in the convolutional
layer, which computes the output features map. There are many activation functions, e.g.,
Rectified Linear Unit (ReLu), softmax, sigmoid, hyperbolic tangent (tanh) and maxout. The
most commonly used activation functions for multi-class classification problems are ReLu
and softmax [3,7,26,28].

The pooling layers reduce the spatial dimension of the convolutional layers’ output
feature vector and extract the most useful high-level features with a moving kernel win-
dow [24,31,32]. There are multiple pooling layers, such as max pooling, average pooling,
and mean pooling layers. The max pooling layer is the most commonly used layer in CNN.
The pooling layer helps in reducing overfitting, as it extracts high-level features from the
features map [33,34].

All the layers are connected to fully connected layers (dense layers). There is a
flattening layer that converts the extracted features from the previous layers into a one-
dimensional (1D) feature vector [35]. The dense layers take the 1D feature vector as an
input. The dense layers consist of a number of neurons. Each neuron is composed of weight,
bias, and an activation function. The last dense layer has an output layer that produces the
classification result [34].
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2. Materials and Methods
2.1. Study Areas
2.1.1. Training Sites

The study areas considered for this research consist of Gujranwala city and the sur-
rounding peri-urban areas, including Gujranwala Saddar and Wazirabad tehsils (town-
ships), which are located in the Gujranwala district of Punjab, Pakistan (Figure 1). The
study area is situated in the heart of Rachna Doab, a strip of land between the Chenab
River to the north and the Ravi River to the south. It is the 5th most populous region in
Punjab, Pakistan. It has a semi-arid climate. It is characterized by high temperatures during
summer (June to September), ranging between 36 ◦C and 42 ◦C (97 ◦F and 108 ◦F), and low
temperatures during the winter season (November to February), ranging between 7 ◦C and
15 ◦C (45 ◦F and 59 ◦F). It receives the highest precipitation during the monsoon season (July
and August). During other months, the average rainfall is about 25 mm (0.98 inches) [36].
It was specifically selected because of the diversity of LULC found in the area.
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 Figure 1. Study area map.

The area is composed of complex-structured (i.e., spatial and spectrally similar) LULC
features, namely, barren land, settlements (built-up/urban land), vegetation, water bodies
(rivers, canals, streams, etc.), and fallow land. There is unplanned LULC change occurring
in this study area (e.g., growth of settlements) which poses a challenge for LULC monitoring
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of the site, particularly for the spectrally confused LULC features such as settlement, barren
land, and fallow land.

2.1.2. Testing Sites

Two additional cities in Pakistan, Lahore and Faisalabad, were considered for testing
the DL models. These cities have a semi-arid climate. Lahore city is located in the Lahore
district of the province of Punjab. The Ravi River flows at the north of the city of Lahore. It
is the most populous city in the Punjab province. During summer, the highest temperature
varies between 39 ◦C and 47 ◦C (102 ◦F and 117 ◦F), whereas December, January, and
February are the coldest months [37]. The city of Faisalabad is located in the Faisalabad
district of Punjab. Faisalabad is the second most populous district in the Punjab province.
It has a very hot climate. During the summer, the maximum temperature reaches up to
50 ◦C (122 ◦F); mean maximum and minimum temperatures vary between 39 ◦C and 27 ◦C
(102 ◦F and 87 ◦F). During the winter (December, January, and February), the temperature
lies between 21 ◦C and 6 ◦C (70 ◦F and 43 ◦F) [38].

These are metropolitan cities, and have a diversity of unplanned LULC features. These
cities have a less planned LULC structure than the study area sites described in Section 2.1.1.
Therefore, these were deemed as suitable sites to test the performance of the trained DL
models on unseen semi-arid regions.

2.2. Methodology

Figure 2 illustrates a detailed workflow of the methodology used in this study. The
first step comprised the acquisition of Sentinel-2 imagery. In the second step, datasets
were pre-processed and LULC classification was performed using CNN. In the last step,
accuracy assessment was performed for the evaluation of results.

2.2.1. Satellite Data Acquisition

This study used medium-resolution Sentinel-2 data. Sentinel-2′s Multi-Spectral Instru-
ment (MSI) consists of 13 spectral bands, of which 4 bands have a 10 m spatial resolution,
6 bands have a 20 m spatial resolution, and 3 bands have a 60 m spatial resolution. Sentinel-2
is the first freely available satellite data that provides 4 spectral bands (blue, green, red, and
NIR) at 10 m resolution (Landsat 7/8/9 have only 1 panchromatic band with a 10 m spatial
resolution). Sentinel-2 level-2A product data contains Bottom of Atmospheric Reflectance
(BOA) values, and the images are geometrically, radiometrically, and atmospherically cor-
rected. For this study, four cloud-free Sentinel-2 tiles were downloaded from Copernicus
Open Access Hub (https://scihub.copernicus.eu/ (accessed on 27 August 2021)). The
acquisition date for the study area images was 14 October 2020 and 27 October 2020.

2.2.2. Sentinel-2 Data Pre-processing

This study used ten spectral bands of Sentinel-2 data, including the blue, green,
red, and NIR bands, as well as four vegetation red-edge bands and two SWIR bands,
as described in Table 1. The remaining three bands (i.e., bands 1, 9, and 10) were not
used because these bands are related to coastal and atmosphere-related applications, e.g.,
estimating water turbidity and cloud cover, and are not typically used for LULC mapping
applications. Bands 5, 6, 7, 9, 11, and 12 were resampled from 20 m spatial resolution to
10 m spatial resolution using nearest-neighbor interpolation to integrate them with the
10 m spatial resolution bands. Nearest-neighbor interpolation is a resampling technique
widely used in remote sensing to down-sample satellite image pixels [39]. Two different
band composites were created for this study, as follows:

• A 4-band composite was created by using NIR, green, blue, and red bands.
• A 10-band composite was created by adding the two SWIR bands and four vegetation

red-edge bands to the 4-band composite.

https://scihub.copernicus.eu/
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Table 1. Details of Sentinel-2 bands used in this research.

Spectral Bands Central Wavelength (nm) Spatial Resolution (m)

Band 2: Blue 0.409 10
Band 3: Green 0.56 10
Band 4: Red 0.665 10

Band 5: Vegetation Red-Edge 0.705 20
Band 6: Vegetation Red-Edge 0.74 20
Band 7: Vegetation Red-Edge 0.783 20

Band 8: Near infrared 0.842 10
Band 8A: Vegetation Red-Edge 0.865 20

Band 11: SWIR 1.61 20
Band 12: SWIR 2.19 20
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No extra indices or features were used for classification because they have limited
contributions to LULC classification using CNN methods [40].

After the creation of band composites, the Region of Interest (ROI) was extracted from
the stacked images using ROI boundary shapefiles.

2.2.3. Dataset Preparation

Five different LULC classes—settlement, barren land, fallow land, vegetation, and
water bodies—were considered for classification of the Sentinel-2 composite images (4-band
and 10-band images). Patch-based CNN was used for image classification in this study,
as it typically performs better than the pixel-based CNN method in terms of classification
accuracy [9,27,28]. The CNN patch size is determined on the basis of the LULC features to
be extracted from the satellite imagery, e.g., their size and spatial structure, considering the
image spatial resolution [7]. In this study, a 5 × 5 pixel patch size was selected due to the
complex structure of LULC features.

Next, training data was collected. In total, 2400 training patches of 5 × 5 pixel
dimensions were extracted for each LULC class. These training patches were manually
labeled through visual interpretation using high-resolution Google Earth imagery. Table 2
presents the details of training samples used for LULC classification.

Table 2. Details of training samples used for LULC classification.

LULC Classes Training Patches (5 × 5) Pixels

Settlement 2400
Barren land 2400
Fallow land 2400
Vegetation 2400

Water bodies 2400

2.2.4. LULC Classification

LULC classification was performed by using CNN, with 4-band and 10-band compos-
ite datasets as inputs. The classification was performed in Google Colab Pro, and the CNN
implemented in Google’s TensorFlow.

2.2.5. The Proposed 2D CNN

In this study, we proposed a CNN architecture that is appropriate for the LULC
classification of semi-arid regions and that efficiently extracts features from the images.
The CNN model was fed with the 3D input shape (size × size × number of bands) with
a patch size of 5 × 5 × 4 and 5 × 5 × 10 pixels. The proposed architecture comprises
three convolutional layers. The first, second, and third convolutional layers have a filter
of 16, 32, and 64, respectively. All the convolutional layers have been used with kernel
size (2,2) and stride (1,1). Two max pooling layers with kernel size (2,2) were used because
max pooling layers reduce the spatial dimension and pick the maximum pixel value from
the training images [24,31,32]. Two batch normalization layers were used to increase the
training speed. Five dropout layers were used: three dropout layers with size (0.2) and two
dropout layers with size (0.5) were used to avoid overfitting in the training process. One
flattening layer was used to convert the 2D data vector into the 1D vector used as input to
the dense layers. Two dense layers were used with the ReLu activation function. One dense
layer was used with 64 neurons and the second dense layer was used with 128 neurons.
The ReLu activation function performs the element-wise operations and sets all negative
pixels to zero, outputting a rectified feature map. Finally, one output layer was used with
the softmax activation function. Figure 3 shows the architecture of the proposed CNN for
semi-arid region LULC classification.
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Parameter Optimization

CNNs architecture requires setting several parameters, including the number of
epochs, learning rate, batch size, activation function, optimizer, loss function, etc. Values
of these parameters can have a significant impact on classification accuracy [41]. Thus,
there is a need to fine-tune these parameter settings to get the desired more-accurate out-
put (classified LULC map). In this study, we have performed experiments with several
different batch sizes (32, 64, and 128) and numbers of epochs (30, 50, 100, 150, 200, 250,
and 300). The Adam optimizer was used to reduce the training cost and computational
power, and to have the dominant effect of achieving higher classification accuracy [28,42].
The model was also experimented with using different loss functions, such as categorical
cross-entropy class, sparse categorical cross-entropy function, categorical cross-entropy
functions, and sparse categorical cross-entropy class. The ReLu activation function was
used as an activator in all the hidden layers because it allows the model to run fast and
perform better [43]. The softmax activation function is used in the output layer. Multiple
experiments were performed with different learning rate values such as 0.1, 0.01, 0.001,
0.0001, etc. The parameters and their values are described in Table 3.

Table 3. Simulation parameters.

Parameter Value

Dropout 0.2, 0.5
Learning Rate 0.0001

Epochs 300
Batch Size 128

Activation Functions ReLu, softmax
Loss Function categorical cross entropy

Optimizer Adam
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2.2.6. Performance Evaluation

The classification results were evaluated using qualitative and quantitative meth-
ods. For the qualitative assessment, classification maps were visually compared with the
referenced data (Google Earth imagery). For the quantitative assessment, we randomly
generated 850 points in each of the training and testing sites based on the classified LULC
maps and used them for calculating Overall Accuracy (OA), User Accuracy (UA), Producer
Accuracy (PA), and kappa coefficient based on visual interpretation of the Google Earth
imagery and the LULC maps. OA is calculated by dividing the total number of correctly
classified points (sum of the diagonal points) by the total number of ground truth points
in the confusion matrices. The PA is calculated by dividing the correctly classified points
by the total number of points (points in the column of each class) classified as the LULC
class. The UA is calculated by dividing the total number of correctly classified points by the
total number of ground truth points (points in the rows of each class) [20,44,45]. A kappa
analysis yields a K statistic, which is a quantitative measure of agreement or accuracy
of correctly classified points. K = 1 indicates the ideal agreement; K closer to 1 means
that there is perfect agreement in the correctly classified points [46]. The K statistic was
computed as:

K =
N ∑n

i,j=1 Xij −∑n
i,j=1(Yi × Zj)

N2 −∑n
i,j=1(Yi × Zj)

(1)

where N is the total number of ground truth points, n is the total number of LULC classes,
Xij is the sum of correctly classified points in row i and column j, Yi is the total number of
points in rows, and Zj is the total number of points in the columns.

3. Results
3.1. Qualitative Analysis of Training Site Land Cover Maps

Figure 4 shows the comparison between the 4- and 10-band CNN models’ classification
results of the training site study area. Figures 5 and 6 show smaller subsets of these maps
in more detail. The false-color composite images were used as a reference in comparison
with the classification maps. Figure 5a,c depicts an area which is mainly characterized
by the river, fallow land, wet crops (irrigated crops), and small settlement region. It can
be observed that, in the rectangle’s area, the 10-band CNN model could not classify the
river pixels better than the 4-band CNN model. The 10-band CNN model misclassified the
river area as barren land area and could not preserve the exact geometry of the landcover
scene. In Figure 5c, 4-band CNN results show some pixels of barren land are misclassified
as settlement, but there is no misclassification between these classes in the 10-band CNN
results. Figure 5b represents the rural area characterized by wet crops. In the rectangle’s
area, the 10-band CNN model confused settlement, fallow land, and water bodies classes.
It misclassified the settlement and fallow land areas as barren land, while the 4-band
CNN model classified these landcover areas well. Figure 5d involves the rural area with
vegetation, fallow land, and a small settlement area. The 10-band CNN model misclassified
some settlement areas as fallow land. The 4-band CNN model classified the roads, but
the 10-band CNN model could not. Figure 6a represents the rural area with canal, fallow
land, vegetation, and settlement areas. The 10-band CNN model misclassified the canal
area as a settlement area, and wet crop as fallow land. On the other hand, the 4-band CNN
model has correctly classified these landcover classes. Figure 6b,d depicts a canal area with
some settlement and fallow land areas. The 10-band CNN model shows compactness in
the canal area as compared to the 4-band CNN model results. The 10-band CNN model
misclassified the wet crop area as barren land class. Figure 6c shows the urban area; in the
rectangle’s area, it can be seen that the 10-band CNN model has misclassified some urban
areas as fallow land and barren land class. The qualitative analysis of these landcover maps
demonstrates that the 4-band CNN model results are better than the 10-band CNN model
results. The spectral confusion between the highly spectrally confused LULC classes is
higher in the 10-band CNN model as compared to the 4-band CNN model results.



Sensors 2022, 22, 8750 10 of 21

Sensors 2022, 22, x FOR PEER REVIEW 11 of 22 
 

 

roads, but the 10-band CNN model could not. Figure 6a represents the rural area with 
canal, fallow land, vegetation, and settlement areas. The 10-band CNN model misclassi-
fied the canal area as a settlement area, and wet crop as fallow land. On the other hand, 
the 4-band CNN model has correctly classified these landcover classes. Figure 6b,d depicts 
a canal area with some settlement and fallow land areas. The 10-band CNN model shows 
compactness in the canal area as compared to the 4-band CNN model results. The 10-band 
CNN model misclassified the wet crop area as barren land class. Figure 6c shows the ur-
ban area; in the rectangle’s area, it can be seen that the 10-band CNN model has misclas-
sified some urban areas as fallow land and barren land class. The qualitative analysis of 
these landcover maps demonstrates that the 4-band CNN model results are better than 
the 10-band CNN model results. The spectral confusion between the highly spectrally 
confused LULC classes is higher in the 10-band CNN model as compared to the 4-band 
CNN model results. 

 
Figure 4. Comparison between the classification results of training site study area. (a) False-color 
composite image of training sites study area. (b) Classification result of 4-band CNN model. (c) 
Classification result of 10-band CNN model.  

Figure 4. Comparison between the classification results of training site study area. (a) False-color
composite image of training sites study area. (b) Classification result of 4-band CNN model. (c) Clas-
sification result of 10-band CNN model.



Sensors 2022, 22, 8750 11 of 21
Sensors 2022, 22, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 5. (a–d) are smaller subsets of training site classified map. First column shows the false-color 
composite images, second and third columns show the classification maps of 4- and 10-band CNN 
models, respectively. The yellow rectangles highlight areas with differences between the classifica-
tion results of 4- and 10- band CNN models. 

Figure 5. (a–d) are smaller subsets of training site classified map. First column shows the false-color
composite images, second and third columns show the classification maps of 4- and 10-band CNN
models, respectively. The yellow rectangles highlight areas with differences between the classification
results of 4- and 10- band CNN models.



Sensors 2022, 22, 8750 12 of 21
Sensors 2022, 22, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 6. (a–d) are smaller subsets of training site classified map. First column shows the false-color 
composite images, second and third columns show the classification maps of 4- and 10-bands CNN 
models, respectively. The yellow rectangles highlight areas with differences between the classifica-
tion results of 4- and 10- band CNN models. 

  

Figure 6. (a–d) are smaller subsets of training site classified map. First column shows the false-color
composite images, second and third columns show the classification maps of 4- and 10-bands CNN
models, respectively. The yellow rectangles highlight areas with differences between the classification
results of 4- and 10- band CNN models.



Sensors 2022, 22, 8750 13 of 21

3.2. Quantitative Analysis of Training Site Classification Results

The highest OA, 97.7%, is achieved by the 4-band CNN model (kappa coefficient = 0.97)
(Table 4). For the 4-band CNN model, the barren land class has the lowest PA with 94.3%.
It misclassified 1.7% of pixels as fallow land class and 4% as settlement class (Table 5).
These are highly spectrally confused LULC classes. The settlement, vegetation, and water
bodies classes have the highest PA accuracy among all the LULC classes; it is difficult to
classify settlement class. Our proposed CNN model accurately classified the unplanned
settlement class in this region. For the 10-band CNN model, barren land has the lowest
PA with 87.3%. It misclassified 5.5% of pixels as fallow land class and 6.3% as settlement
(Table 6). These results show that the 4-band CNN model is better than the 10-band CNN
model in terms of classification accuracy. The 4-band CNN model has classified spectrally
confused LULC classes with higher accuracy. The 4-band CNN model had a computational
time of 2 min 17 s, which is lower than the 10-band CNN model’s computational time
(3 min 42 s) (Table 4). The graphical representation of results (Table 4) is shown in Figure A1
(Appendix A).

Table 4. OA (%), kappa measures, and training time of 4–10-band CNN models.

Model OA Kappa Coefficient Training Time

4-band CNN 97.7 0.97 2 min 17 s
10-band CNN 95.8 0.94 3 min 42 s

Table 5. The confusion matrix of the training site classification results obtained by 4-band CNN
model.

LULC Classes Barren Land Settlement Fallow Land Vegetation Water Bodies Sum UA (%)

Barren land 116 1 8 0 0 125 92.8
Settlement 5 193 0 0 2 200 96.5

Fallow land 2 0 197 1 0 200 98.5
Vegetation 0 0 0 200 0 200 100

Water bodies 0 0 0 0 125 125 100
Sum 123 194 205 201 127 850

PA (%) 94.3 99.4 96 99.5 98.4

Table 6. The confusion matrix of the training sites classification results obtained by 10-band CNN
model.

LULC Classes Barren Land Settlement Fallow Land Vegetation Water Bodies Sum UA (%)

Barren land 110 2 1 0 4 117 94
Settlement 8 186 1 0 4 199 93.46

Fallow land 7 2 202 1 0 212 95.28
Vegetation 1 1 3 197 0 202 97.5

Water bodies 0 0 0 0 120 120 100
Sum 126 191 207 198 128 850

PA (%) 87.3 97.3 97.58 99.4 93.75

3.3. The Trained 4–10-Band CNN Models’ Prediction on Unseen Sites

We have tested the trained 4- and 10-band CNN models on two cities: Lahore and
Faisalabad. Figure 7 shows the comparison between the 4- and 10-band CNN models’
classification results of Lahore and Faisalabad. Figure 8 shows smaller subsets of testing
site classification results in more detail. Figure 8a,b depicts the LULC maps of Lahore
city. As shown in Figure 8a, the area mainly comprises river, vegetation, and fallow land
features. In the rectangle’s area, the 10-band CNN model shows compactness in the river
area and misclassifies the river pixels as settlements. The 4-band CNN correctly classified
these land covers. In Figure 8b, the 4-band CNN classified the road as settlement, but
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the 10-band CNN classified the road pixels as vegetation pixels. Figure 8c,d shows the
LULC map of Faisalabad city. Figure 8c,d represents the urban, vegetation, and fallow land
areas. The 10-band CNN model misclassified the water bodies area as barren land, and the
barren land area as fallow land. The 4-band CNN model correctly classified these classes
more than the 10-band CNN model. The highest OA, 94.8% and 91.4%, was achieved
by the 4-band CNN model for Lahore and Faisalabad city images, respectively (Table 7).
For Lahore city, the highest PA was achieved by the settlement class with 99.1%, and the
lowest PA, 90.3% and 90.4%, was achieved by the fallow land and barren land classes
respectively. For barren land, 7.8% and 1.7% of pixels were misclassified as settlement
and fallow land classes, respectively. For fallow land, 6.89%, 1.37%, and 1.37% of pixels
were misclassified as vegetation, barren land, and settlement class, respectively (Table 8).
The 10-band CNN model has achieved the lowest PA, with 67.2% and 83.4% for barren
land and water bodies classes, respectively. In the case of barren land, 14.1%, 15.9% and
2.65% of pixels were misclassified as settlement, fallow land, and vegetation class pixels
respectively. For water bodies, 11.7%, 2.9% and 1.9% of pixels were misclassified as barren
land, settlement, and fallow land classes, respectively (Table 9). The 4-band CNN model
prediction results are better in terms of classification accuracy than the 10-band CNN model
results. For Faisalabad city, the highest and lowest PA was achieved by the settlement class,
with 99%, and barren land class, with 61.3%. For barren land, 21.3% and 17.4% of pixels
were misclassified as settlement and fallow land class pixels, respectively (Table 10). The
10-band CNN achieved the lowest PA of 46.37% for the barren land class and 68.5% for
the water bodies class. For barren land, 20.2% and 33.43% of pixels were misclassified as
settlement and fallow land classes, respectively. For water bodies, 25.71%, 3.8%, and 1.99%
of pixels were misclassified as barren land, settlement, and vegetation classes, respectively
(Table 11). The 4- and 10-band CNN model prediction results on unseen data demonstrate
that the 4-band CNN model prediction results are better than the 10-band CNN model
prediction results in terms of classification accuracy. The misclassification between the
spectrally confused LULC classes is higher in 10-band CNN model results than in the
4-band CNN model results. The graphical representation of results (Table 7) is shown in
Figure A1.

Table 7. OA (%), kappa coefficient of 4–10-band CNN models for the Lahore and Faisalabad city
images.

Testing Sites Model OA (%) Kappa Coefficient

Lahore city 4-band CNN 94.8 0.93
10-band CNN 88.8 0.85

Faisalabad city 4-band CNN 91.4 0.88
10-band CNN 85.1 0.79

Table 8. The confusion matrix of the testing site (Lahore city) classification results obtained by 4-band
CNN model.

LULC Classes Barren Land Settlement Fallow Land Vegetation Water Bodies Sum UA (%)

Barren land 104 0 2 0 0 106 98.1
Settlement 9 225 2 0 1 237 94.9

Fallow land 2 2 131 13 3 151 86.75
Vegetation 0 0 10 247 0 257 96.1

Water bodies 0 0 0 0 99 99 100
Sum 115 227 145 260 103 850

PA (%) 90.4 99.1 90.3 95 96.11
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Table 9. The confusion matrix of the testing site (Lahore city) classification results obtained by
10-band CNN model.

LULC Classes Barren Land Settlement Fallow Land Vegetation Water Bodies Sum UA (%)

Barren land 76 1 8 0 12 97 78.3
Settlement 16 207 0 0 3 226 91.5

Fallow land 18 12 132 7 2 171 77.1
Vegetation 3 4 9 254 0 270 94

Water bodies 0 0 0 0 86 86 100
Sum 113 224 149 261 103 850

PA (%) 67.2 92.4 88.5 97.3 83.4Sensors 2022, 22, x FOR PEER REVIEW 16 of 22 
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Table 10. The confusion matrix of the testing site (Faisalabad city) classification results obtained by
4-band CNN model.

LULC Classes Barren Land Settlement Fallow Land Vegetation Water Bodies Sum UA (%)

Barren land 46 0 0 2 0 48 95.8
Settlement 16 319 0 0 0 335 95.2

Fallow land 13 3 89 34 2 141 63.1
Vegetation 0 0 3 213 0 216 98.6

Water bodies 0 0 0 0 110 110 100
Sum 75 322 92 249 112 850

PA (%) 61.3 99 96.7 85.5 98.2

Table 11. The confusion matrix of the testing site (Faisalabad city) classification results obtained by
10-band CNN model.

LULC Classes Barren Land Settlement Fallow Land Vegetation Water Bodies Sum UA (%)

Barren land 32 2 2 0 27 63 50.7
Settlement 14 306 0 1 4 325 94.1

Fallow land 23 7 78 30 0 138 56.52
Vegetation 0 4 10 236 2 252 93.65

Water bodies 0 0 0 0 72 72 100
Sum 69 319 90 267 105 850

PA (%) 46.37 95.9 86.6 88.38 68.5

4. Discussion

The aim of this study was to analyze the spectral bands of Sentinel-2 imagery for
semi-arid region classification problems, e.g., which spectral band combination can reduce
the spectral confusion between spectrally confused LULC classes. A 2D-patch-based CNN
with fixed architecture and fine-tuned hyperparameters was used for classification. In
total, 2400 training patches of 5 × 5 pixel size were manually labeled for each LULC class
(Table 2). The 4–10-band composite CNN models were trained. It has been observed that
4-band CNN performed better in terms of classification accuracy than the 10-band CNN
model. The 10-band CNN model has produced acceptable results. As shown in Figures 5
and 6, there is more misclassification between spectrally confused LULC classes (barren
land, settlement, and fallow land) in 10-band CNN model results as compared to the 4-band
CNN model results. An OA of 97.7% and 95.8% is achieved by the 4- and 10-band CNN
models, respectively (Table 4). Tables 5 and 6 describe the per class PA and UA of every
LULC class for 4–10-band CNN models. We have achieved the highest PA for settlement
(99.4%), fallow land (96%), and barren land (94.3%) classes, as the classified results can be
seen in Figures 5 and 6. These are the highly spectrally confused LULC classes.

We have tested the trained 4–10-band models on two out-of-sample semi-arid cities:
Lahore and Faisalabad. Figures 7 and 8 show the comparison between the 4- and 10-band
CNN model classification results of Lahore and Faisalabad. A highest OA of 94.8% and
91.4% was achieved by the 4-band CNN model for Lahore and Faisalabad city images,
respectively (Table 7). Per class UA and PA of 4- and 10-band CNN models for Lahore and
Faisalabad city images are described in Tables 8–11. We have achieved promising results
on testing sites. This is evidence of our right approach to the preparation of the dataset and
the proposed CNN model with fixed architecture and tuned hyperparameters.

The reason for the 10-band CNN model classification accuracy being lower than
the 4-band CNN model is due to the lower spatial resolution of the additional six 20 m
bands, which were down-sampled to 10 m spatial resolution in this study using the nearest
neighbor resampling method. The nearest neighbor is an efficient resampling method for
downscaling of spectral bands [47,48], and it has the advantage of preserving and making
few alternations to the original pixel values of resampled bands as compared to the other
resampling methods [49]. However, this down-sampling process does not increase the



Sensors 2022, 22, 8750 18 of 21

resolution of the original image bands, it merely modifies them to have a smaller pixel size.
Band resampling is a very time-consuming process and requires computational power,
especially for large-area images. Applying more complicated image fusion algorithms—e.g.,
image pan sharpening of the 20 m bands—may lead to better classification performance, but
requires even more computational power and sometimes leads to spectral distortion of the
down-sampled image bands [39,50]. That said, future studies could compare the accuracy
of 4-band and 10-band Sentinel-2 composite images after applying more complex image
fusion algorithms to better understand the utility of the additional six lower-resolution
image bands for LULC mapping in semi-arid regions.

5. Conclusions

It is very difficult to separate spectrally confused land-cover classes in semi-arid re-
gions using medium-resolution remotely sensed data, as the spectral response of several
classes (e.g., settlements, barren land, and fallow land) are highly similar. In this study,
we used a CNN model with fixed architecture to perform LULC classification in three
study sites in Pakistan. The first study site (consisting of Gujranwala city and Gujran-
wala Saddar and Wazirabadtownships, Pakistan) was used as a training site for tuning
the CNN’s hyperparameters, and the optimized CNN was then applied to two unseen
testing sites (Lahore city and Faisalabad city, Pakistan) to evaluate the robustness of our
proposed classification approach in semi-arid regions with complex LULC compositions.
This study also evaluated the efficacy of different band combinations of Sentinel-2 imagery
for LULC classification in these semi-arid regions. In training sites, our experimental results
showed that a 4-band CNN model (blue, green, red, and near-infrared bands) with the
proposed CNN architecture achieved an overall classification accuracy of 97.7% (kappa
coefficient = 0.97), outperforming the 10-band CNN model (overall accuracy = 95.8%, kappa
coefficient = 0.94). In the two testing sites, the trained 4- and 10-band CNN models achieved
overall classification accuracies of 94.8% and 88.8%, respectively, for Lahore city, and 91.4%
and 85.1%, respectively, for Faisalabad city. The results showed that the 4-band (10 m
spatial resolution) CNN model was more suitable for separating the spectrally confusing
LULC classes in the training and testing sites, as it achieved higher classification accuracy
and required lower computational power and training time than the 10-band CNN model.
Although we have only focused on the use of CNNs for semi-arid LULC mapping in this
study, other Machine Learning and Deep Learning methods may also be able to achieve
similar or better performance under different circumstances (e.g., considering different
training data sizes/different types of LULC classes). Future works could focus on compar-
ing our optimal 4-band CNN model with other classification models to better understand
these factors. It is hoped that our findings can be helpful for future studies involving
the mapping of LULC in semi-arid regions using Sentinel-2 or other medium-resolution
satellite imagery.
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