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A B S T R A C T   

Understanding how biophysical and biochemical variables contribute to the spectral characteristics of vegetation 
canopies is critical for their monitoring. Quantifying these contributions, however, remains difficult due to 
extraneous factors such as the spectral variability of canopy background materials, including soil/crop-residue 
moisture, soil-type, and non-photosynthetic vegetation (NPV). This study focused on exploring the spectral 
response of two important agronomic variables (1) leaf chlorophyll content (Cab) and (2) leaf area index (LAI) 
under various canopy backgrounds through a global sensitivity analysis of wheat-like canopy spectra simulated 
using the physically-based PROSAIL radiative transfer model. Our results reveal the following general findings: 
(1) the contribution of each agronomic variable to the simulated canopy spectral signature varies considerably 
with respect to the background optical properties; (2) the influence of the soil-type and NPV on the spectral 
response of canopy to Cab and LAI is more significant than that caused by soil/crop-residue moisture; (3) spectral 
bands at 560 and 704 nm remain sensitive to Cab while being least affected by the impacts of variations in the 
NPV, soil-type and moisture; (4) the near-infrared (NIR) spectral bands exhibit higher sensitivity to LAI and 
lower background effects only in the cases of soil/crop-residue moisture but are relatively strongly affected by 
soil-type and NPV. Comparative analysis of the correlations of twelve widely used vegetation indices with 
agronomic variables indicates that LICI (LAI-insensitive chlorophyll index) and Macc01 (Maccioni index) are 
more effective in estimating Cab, while OSAVI (optimized soil adjusted vegetation index) and MCARI2 (modified 
chlorophyll absorption ratio index 2) are better LAI predictors under the simulated background variability. 
Overall, our results highlight that background reflectance variability introduces considerable differences in the 
agronomic variables’ spectral response, leading to inconsistencies in the VI- Cab /-LAI relationship. Further 
studies should integrate these results of spectral responsivity to develop trait-specific hyperspectral inversion 
models.   

1. Introduction 

Plants are an essential component of the terrestrial ecosystem. Leaf 
area index (LAI), as an indicator of vegetation growth (Ma et al., 2018), 
and the leaf chlorophyll content (henceforward referred to as Cab), as an 
indicator of the photosynthetic capacity of vegetation (Croft et al., 
2017), are two of the most important vegetation variables that control 

water, energy and carbon exchange processes in the terrestrial 
biosphere. Knowledge of the spatial distribution of the LAI and Cab is 
therefore crucial to assess the terrestrial carbon and water balance and 
to forecast agricultural yield, especially facing the challenges of global 
change (Chen et al., 2019; Gitelson et al., 2003; Houborg et al., 2013; 
Huang et al., 2015). Remote sensing can provide such information by 
enabling the non-destructive estimation of LAI and Cab at regional to 
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global scales (Croft et al., 2020; Fang et al., 2019). The retrieval of LAI 
and Cab from remote sensing data relies on the fact that the optical 
properties of leaves and the canopy correlate strongly with vegetation 
amount and leaf composition (Asner, 1998; Jacquemoud et al., 2009). 
Consequently, an in-depth understanding of how the LAI and Cab 
determine the vegetation spectral behavior – including vegetation 
indices (VIs) – under the effects of external factors is vital for a more 
accurate estimation of LAI and Cab from remote sensing data. In this 
respect, the effects of changing soil background characteristics deserve 
more attention as, generally, even within a small agricultural field, the 
background optical properties vary spatially and temporally (Baret and 
Guyot, 1991; Li et al. 1993). Such spatiotemporal variations in back-
ground reflectance are the main source of uncertainty in 
satellite-derived LAI or Cab products (Darvishzadeh et al., 2008a, 2019; 
Eitel et al., 2009; Verrelst et al. 2010). 

Numerous studies have used simulations based on radiative transfer 
models (RTMs) to analyze the sensitivity of surface reflectance of a soil- 
vegetation system, usually through either local sensitivity analysis (LSA) 
or global sensitivity analysis (GSA) methods. LSA involves the qualita-
tive analysis of the relationships between the spectral characteristics and 
a specific biophysical or biochemical parameter while keeping the 
remaining variables fixed. This has been successfully applied to evaluate 
the spectral sensitivity of agronomic variables to different soil types and 
water contents (Bach and Verhoef, 2003; Díaz and Blackburn, 2003; 
Huete et al. 1985; Morcillo-Pallarés et al., 2019). However, LSA cannot 
identify and quantify the influential and noninfluential variables – and 
their mutual interdependences – that govern the spectral signatures at 
different wavelengths over the entire input variable space (Saltelli and 
Annoni, 2010). Such assessments have important implications for 

selecting optimal wavelengths for the estimation of LAI and Cab. More-
over, previous applications of LSA rarely included the spectral response 
in the shortwave infrared (SWIR) bands that are configured in popular 
satellite sensors (e.g., Landsat-8 OLI, Sentinel-2 MSI) and commonly 
used for LAI retrievals (Amin et al., 2021; Dong et al., 2020). By contrast, 
GSA quantifies simultaneously the contribution of various model input 
parameters to the reflected electromagnetic radiation (Gu et al., 2016; 
Mousivand et al., 2014; Wang et al., 2019; Xiao et al., 2014), and is 
therefore typically preferable over LSA. In previous studies, however, 
GSA has often ignored the sometimes high spatiotemporal variability in 
the background optical properties. 

To gain maximum understanding, sensitivity analyses should include 
major factors which contribute to the spectral variability of background 
materials. Typically, in many agricultural ecosystems, the background 
spectrum is highly heterogeneous due to different soil types, organic 
carbon contents, fertilizer treatments, amounts and type of non- 
photosynthetic vegetation (NPV, e.g., crop residue, litter, senescent 
grass), and surface water and roughness status. Therefore, it is impera-
tive to better elucidate the spectral response of vegetation variables 
under different background conditions. 

The objectives of this paper are: (1) to quantify the contributions of 
LAI and Cab to the full-wavelength spectral response (400–2400 nm), as 
well as to commonly available VIs, when background optical properties 
are variable, and (2) to determine the spectral regions where LAI and/or 
Cab most strongly affect the canopy spectral characteristics while being 
minimally influenced by variations in background reflectance. To 
address these goals, extensive numerical experiments based on radiative 
transfer simulations were conducted to generate representative spectral 
datasets. Research objectives were investigated for a setting simulating 

Fig. 1. Reflectance spectra of 55 backgrounds used as input into the PROSAIL model: (a) bare soil at seven different relative water contents (RWC), (b) crop residue 
with seven different levels of moisture content, (c) 17 contrastive soil types, and (d) 24 NPV. 
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wheat canopies (Triticum aestivum L.) as well as other continuous crop 
canopies similar to wheat. 

2. Materials and methods 

2.1. Background spectra 

Mimicking vegetation spectra with variable backgrounds requires 
realistic spectra from background materials and appropriate canopy 
reflectance models. Spectral reflectance of various soil types in China 
were collected from (i) a subset of the ICRAF-ISRIC spectral library (the 
International Centre for Research in Agroforestry-International Soil 
Reference and Information Centre) as described by Garrity and Bind-
raban (2004), and (ii) the CSSL spectral library (the Chinese Soil Spec-
tral Library) described in Shi et al. (2014). The ICRAF-ISRIC spectral 
library includes 245 soil profiles collected from 47 locations in China. 
The CSSL spectral library contains 1581 soil samples derived from 16 
soil groups of the Genetic Soil Classification of China (GSCC). Fifty-one 
reflectance spectra of NPV were acquired from the ECOSTRESS spectral 
library (the ECOsystem Spaceborne Thermal Radiometer Experiment on 
Space Station, see Meerdink et al., 2019 for details). To avoid data 
redundancy caused by similar soil or NPV spectra in these three inde-
pendent spectral libraries and to better sample the feature space, we 
used the spectral angle mapping classification method (Kruse et al., 
1993) to identify several representative spectra based on the following 
equation: 

αXY = cos− 1

⎡

⎢
⎣

∑n
i=1(xiyi)
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where, X = (x1, x2, …, xn) and Y = (y1, y2, …, yn) are two different 
soil spectral vectors with n wavebands; αXY is the spectral angle between 
X and Y and ranges from 0 to π/2 (αXY = 0 means that X and Y are 
completely similar, while αXY = π/2 means that X and Y are entirely 
different). 

Using the criterion that two different spectra with a spectral angle α 
< 0.05 would be identified as similar reflectance (Jia et al., 2016), the 
spectral reflectance curves of 1826 soil and 51 NPV were classified into 
17 soil and 24 NPV groups, respectively. In addition, a set of average 
spectra generated from a dataset containing 70 crop-residue and soil at 

seven moisture levels (Quemada and Daughtry, 2016) was used to 
mimic the canopy spectral variation due to differences in water contents 
of the ground underneath the canopy. In total, 55 different background 
reflectance spectra were assessed (Fig. 1): 17 soil types, 24 NPV, 7 soil 
moisture contents, and 7 crop-residue moisture contents. The chosen 
background spectra display highly distinct spectral contrast linked to 
soil type, composition, texture, and surface conditions, which permits to 
assess the impacts of a wide range of natural backgrounds. As a limita-
tion it has to be noted however that the spectra come from different 
sources and are not mutually inclusive – in particular the (hypothetical) 
averages of the subsets (a) to (d) in Fig. 1 would not match each other. 

2.2. Global sensitivity analysis 

We used the extended Fourier amplitude sensitivity test method 
(EFAST, Saltelli et al., 2008), implemented in the software package 
SimLab (ver. 2.2, SIMLAB, 2009) to perform the global sensitivity 
analysis of the simulated datasets. The EFAST is a variance-based GSA 
method which has recently gained wider attention in agricultural 
modeling (Jin et al., 2018; Xu et al., 2019). The sensitivity measures of 
EFAST include the first-order sensitivity index Si, which reflects the in-
dividual contribution of each input parameter to the model output, and 
the total-order sensitivity index STi, which represents the overall 
contribution of each parameter to the model output (including in-
teractions between each parameter and the remaining parameters). Both 
sensitivity indices can be expressed as follow: 

Si =
Vi

V  

STi = Si +
∑

j∕=i

Sij + ⋯ + S1,2,…,k  

where Vi (Vi = V[E(Y|xi)]) represents the first-order variance for each 
input factor; V is the attribution of total output variance and calculated 
according to V =

∑k
i=1Vi +

∑k
i=1

∑k
j>iVij + ⋯+ V1,2,…,k; and Vij (Vij =

V[E(Y|xi, xj)] − Vi − Vj) to V1,2,…,k represent the interactions among k 
factors (see Saltelli et al., 2010, for further details on EFAST). 

To investigate the spectral response of agronomic variables with 
different background scenarios, the EFAST global sensitivity analysis 
was performed using simulations with the well-known radiative transfer 
model PROSAIL (Berger et al., 2018; Jacquemoud et al., 2009) that could 
produce nadir-viewed canopy reflectance (from 400 to 2400 nm in 1 nm 
increments), assuming negligible atmospheric effects. The MATLAB 
code for PROSAIL can be downloaded at http://teledetection.ipgp. 
jussieu.fr/prosail/. To parameterize the PROSAIL model in a plausible 
manner, a combination of (i) prior knowledge (Liu et al., 2012; Verger et 
al. 2014; Xu et al., 2019; Zhang et al. 2016) from site-specific informa-
tion gathered in field campaigns of wheat, and (ii) related published 
literature (Feret et al., 2011; Liang et al., 2015; Xiao et al., 2014) were 
used to assign the specific ranges of the main model input variables of 
wheat-like canopies (Table 1). All parameters were varied indepen-
dently as information about possible covariation was not available. 

For an informative sensitivity analysis, the sample size of input pa-
rameters should be as large as possible. On the other hand, the 
computational costs of the simulation increase with sample size. To 
assess how sample size affects the convergence of the sensitivity indices, 
we ran a set of the EFAST global sensitivity analysis with a gradually 
increasing sample size and then computed the total-order sensitivity 
index of the widely-used NDVI (normalized difference vegetation index) 
based on the narrowband reflectance at 670 and 800 nm from PROSAIL 
simulations, corresponding to eight variables. Substantial variations in 
the total-order sensitivity index of each input parameter of the PROSAIL 
model were observed when the sample size is ≤ 10 000 while it is more 
stable for a sample size of 30 000 (Fig. 2). As no more fluctuations 
occurred after 35 000 simulations, a final sample size of 40 000 samples 

Table 1 
Main variables of PROSAIL in the global sensitivity analysis. In bold, the eight 
non-fixed variables of interest.  

Variable Symbol Unit Range Refs. 

Leaf structure parameter N - 1.0-2.5 Liu et al. 
(2012) 

Leaf chlorophyll content Cab μg/cm2 5-100 Xu et al. (2019) 
Leaf carotenoid content Cxc μg/cm2 8 Liang et al. 

(2015) 
Brown pigment content Cbp - 0 Xu et al. (2019) 
Equivalent water 

thickness 
Cw cm 0.0043- 

0.0713 
Feret et al. 
(2011) 

Dry matter content Cm g/cm2 0.0008- 
0.0331 

Feret et al. 
(2011) 

Leaf area index LAI m2/m2 0.1-10 Liang et al. 
(2015) 

Average leaf inclination 
angle 

ALA ˚ 30-80 Verger et al. 
(2014) 

Hot-spot parameter SL - 0.2 Xiao et al. 
(2014) 

Background brightness 
factor 

α - 0-1 Verrelst et al. 
(2015b) 

Solar zenith angle θs ˚ 20-60 - 
Viewing zenith angle θv ˚ 0 - 
Relative azimuth angle φsv ˚ 0 - 
Fraction of diffuse incoming 

solar radiation 
skyl - 0.1 Zhang et al. 

(2016)  
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was selected to distinguish between influential and noninfluential pa-
rameters. Thus, a total of 40 000 combinations of the eight model pa-
rameters (N, Cab, Cw, Cm, LAI, ALA, α, θs) were randomly generated 
(following uniform distribution) within the predefined ranges by using 
EFAST, resulting in the generation of 40 000 canopy spectra by running 
PROSAIL in the forward mode. Contrary to Widlowski et al. (2015), in 
the simulations, effects of leaf/canopy clumping were not considered, 
nor were the effects of background anisotropy. Then, the influence of the 
background on the contribution of Cab and LAI to canopy reflectance as 
well as the twelve VIs selected (given in Table 2) was examined by 
repeatedly running EFAST for each of the 55 background spectra (i.e., 7 
soil moisture contents + 7 crop-residue moisture contents + 17 soil 
types + 24 NPV types). 

Furthermore, assuming measured canopy radiance with a black 
background is theoretically controlled by the scattering properties of the 
vegetation layer only, “pure” vegetation spectra were generated by 
inserting “zero” for background reflectance in the simulation (Jean- 
Baptiste Feret, personal communication; Gao et al., 2000). Note that this 
is equivalent to a canopy bounded by a fully absorbing background 
(Shabanov et al., 2000). The global sensitivity of pure vegetation spectra 
and their VIs (termed “pure” VI hereafter), was also calculated. Then, a 
comparison between the spectral response of a canopy with a scattering 
background (e.g., impacted by soil-type, soil moisture, NPV, 
crop-residue moisture) and that with a non-reflecting – and hence 
non-interfering – background, was studied to gain insight into how 
variation in the spectral response of agronomic variables owned solely to 

vegetation elements (see Appendix A for interested reader, not shown 
here for brevity). 

3. Results 

3.1. Variations of canopy spectral signatures to chlorophyll and LAI for 
different background optical properties 

The background-induced changes in the canopy’s spectral response 
to Cab and LAI are shown in Fig. 3 based on the mean and the standard 
deviation (sd) of the Si criterion. Differences in Si at a certain wavelength 
(as displayed by sd) reveal how much the contribution of the two 
agronomic variables (Cab and LAI) varies, owing to background vari-
ability. Although canopy reflectance around 530–590 nm and around 
690–710 nm is generally more sensitive to Cab than in other spectral 
regions, the same spectral regions are also closely affected by back-
ground variations, not yet well described in the literature. We found 
that, due to the variability of background spectra, the leaf-level chlo-
rophyll-sensitive wavebands in the visible and red-edge regions of the 
spectrum are altered. For example, spectral bands of high sensitivity to 
Cab appear near 560 and 704 nm for variations in soil-type, near 570 and 
700 nm for NPV, and near 595 and 695 nm for variations in soil or crop- 
residue moisture content (Fig. 3a). On the other hand, the impact of 
variations in backgrounds relative to Cab at 560 and 704 nm is less strong 
compared to the impacts on other peak positions. Consequently, the use 
of canopy reflectance at 560 and 704 nm as predictors of Cab estimates is 

Fig. 2. Analysis of the impact of the total number of samples (Ns) on the stability of global sensitivity analysis for NDVI with PROSAIL based on the extended Fourier 
amplitude sensitivity test. 

Table 2 
A set of vegetation indices examined in this paper  

Spectral index Formulation Estimation or Elimination Refs. 

MSAVI, Modified soil adjusted vegetation index 0.5[2R800 + 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2R800 + 1)2 − 8(R800 − R670)

√

]
Background effect Qi et al. (1994) 

OSAVI, Optimized soil adjusted vegetation index (1 + 0.16)(R800 − R670)/(R800 + R670 + 0.16) Background effect Rondeaux et al. (1996) 
NDVI, Normalized difference vegetation index (R800 − R670)/(R800 + R670) LAI Rouse et al. (1974) 
MSR, Modified simple ratio [(R800 /R670) − 1]/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(R800/R670) + 1

√ LAI Chen (1996) 
MCARI2, Modified chlorophyll absorption ratio index 2 1.5[2.5(R800 − R670) − 1.3(R800 − R550)]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2R800 + 1)2 − (6R800 − 5
̅̅̅̅̅̅̅̅̅̅
R670

√
) − 0.5

√
LAI Haboudane et al. (2004) 

sLAIDI, Standardized LAI Determining Index S(R1050 − R1250)/(R1050 + R1250), where S = 5 LAI Delalieux et al. (2008) 
CIRE, Red-edge chlorophyll index (R750 /R710) − 1 Chlorophyll Gitelson et al. (2006) 
MTCI, MERIS terrestrial chlorophyll index (R754 − R709)/(R709 − R681) Chlorophyll Dash and Curran (2004) 
Macc01, Maccioni index (R780 − R710)/(R780 − R680) Chlorophyll Maccioni et al. (2001) 
LICI, LAI-insensitive chlorophyll index (R735 /R720) − [(R573 − R680) /(R573 + R680)] Chlorophyll Li et al. (2020) 
MCARI(705, 750)/OSAVI(705, 750) 

[(R750 − R705) − 0.2(R750 − R550)]
(R750

R705

)

[(1 + 0.16)(R750 − R705)

R750 + R705 + 0.16

]

Chlorophyll Wu et al. (2008) 

PRI, Photochemical reflectance index (R531 − R570)/(R531 + R570) Photosynthetic efficiency Gamon et al. (1992)  
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desirable. This finding provides powerful support for spatially explicit 
monitoring of chlorophyll content using Sentinel-2 data, which have 
green and red-edge bands with center wavelengths of 560 and 704 nm, 
respectively. The canopy reflectance around 680 nm, which matches the 
chlorophyll absorption peaks, is closely related to Cab only when 
considering variations in background moisture but is strongly affected 
by soil-type and NPV. Importantly, the sensitivity of canopy reflectance 
around 680 nm to Cab decreases with increasing background moisture. 

The impacts of background spectral properties on the response of 
canopy reflectance to changes in LAI vary with wavelength. As shown in 
Fig. 3b, spectral variations associated with soil-type and NPV impose a 
greater influence on the LAI-related spectral response of the spectral 

windows 450–530, 630–690 and 774–900 nm than does soil or crop- 
residue moisture. For instance, at the pigment-absorption features 
(around 487 and 675 nm) LAI explains 28% ± 18% and 44% ± 12% 
(when varying soil types) and 26% ± 16% and 30% ± 16% (when 
varying NPV) of variations in canopy reflectance, respectively, as 
opposed to 5% ± 10% and 10% ± 10% (when varying soil moisture) and 
3% ± 3% and 13% ± 5% (when varying crop-residue moisture), 
respectively. Furthermore, canopy spectral response in the NIR range 
(774–900 nm) to LAI over background cases of soil-type and NPV is less 
strong than the response with a more or less wet background. In 
contrast, in the range 1900–2400 nm, differences in soil or crop-residue 
moisture affect the spectral response to LAI more than differences in soil 

Fig. 3. The first-order sensitivity indices with associated error (mean ± standard deviation) of hyperspectral canopy reflectance to (a) Cab and (b) LAI for 55 different 
background scenarios, including soil-type, soil moisture, NPV, and crop-residue moisture. Higher (lower) values of standard deviation indicate larger (less) disturbing 
effects of the respective background. Note that the Si of canopy reflectance is restricted to 400 to 800 nm for Cab as chlorophyll is transparent to infrared radiation 
(Knipling 1970). 

Fig. 4. The first-order sensitivity indices (Si) as measures of the VIs response to Cab and LAI using global sensitivity analysis and the coefficient of determination (R2) 
for the relationships between VIs and Cab and LAI based on the synthetic datasets. The left panels represent the boxplots of Si, and the right panels are error bars of R2 

denoting the standard error in the mean across 55 different background scenarios. 
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types, particularly at water absorption features (around 1930 nm). 

3.2. Sensitivities and correlations of VIs for various backgrounds 

The response of VIs to background variations requires focal attention 
as VIs are extensively applied in the large-scale retrieval of vegetation 
variables. Fig. 4 visualises the sensitivities of different VIs to variations 
in leaf chlorophyll content or LAI and the correlations between agro-
nomic variables and the VIs under all scenarios. In general, background 
influences from soil-type and NPV result in relatively high uncertainties 
in the Cab-VIs relationships derived from simulations, while the effect of 
background moisture variability is minor (Fig. 4a) since the arithmetic 
combination of spectral bands employed in these chlorophyll-related 
indices reduce the effects of background moisture. The PRI remains 
highly sensitive to Cab for all backgrounds except soil-type, in which the 
resulting PRI exhibits the worst performance with 13% interquartile 
range (IQR) of Si and the coefficient of determination (R2) of 0.59 ± 0.07 
(mean ± sd). The CIRE is slightly less sensitive to changes in Cab (Si =

Table 3 
The maximum sensitivity (mean ± sd) of canopy reflectance at different spectral 
regions to variations of leaf-level chlorophyll content based on EFAST.  

Canopy 
background 

Visible region Red-edge region 
Wavelength 
(nm) 

Contribution 
(%) 

Wavelength 
(nm) 

Contribution 
(%) 

Soil-type 560 64 ± 6 704 56 ± 7 
Soil moisture 595 71 ± 1 695 70 ± 2 
NPV 570 67 ± 7 700 62 ± 8 
Crop-residue 

moisture 
595 71 ± 1 695 69 ± 1 

Fully 
absorbing 
background 

585 62 695 62  

Fig. 5. The modelled influences of soil type or moisture on canopy reflectance for twelve canopy densities (LAI = 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8) based on 
PROSAIL. The distributions of all other PROSAIL parameters are kept constant (i.e., N = 1.5; Cab = 25 μg/cm2; Cxc = 8 μg/cm2; Cbp = 0; Cw = 0.01 cm; Cm = 0.004 g 
/cm2; ALA = 57◦; θs = 37◦), and only the set of background spectra is changed according to Fig. 1. The light-colored areas depict the variations in the canopy 
reflectance with background variability. 

L. Gao et al.                                                                                                                                                                                                                                      



Agricultural and Forest Meteorology 326 (2022) 109178

7

56% ± 3%), and is moderately closely related to Cab (R2 = 0.57 on 
average), followed by MCARI/OSAVI(705, 750) with the lowest Si of 34% 
± 1% and R2 of 0.33 (on average). It is worth noting that the MCARI/ 
OSAVI(705, 750) response to Cab is only slightly affected by background 
variability, partly attributed to the OSAVI-based 705 nm feature. By 
contrast, Macc01 and LICI are better estimators of chlorophyll content 
across various background conditions, as evidenced by the relatively 
higher sensitivity (Si > 79% on average) and better relationships with 
Cab (R2 > 0.75 on average), followed by MTCI with Si of 66% ± 1% and 
R2 of 0.66 (on average). In theory, the LICI is recognized to be inde-
pendent of LAI (Li et al., 2020) with only a marginal Si (< 1%, see Fig. B 
illustrating the GSA results for each of the selected VIs) that is lower 
compared to Macc01 with average Si = 4%, and hence is the most robust 
chlorophyll-related index of the VIs tested here. 

Compared to the chlorophyll-related indices, background optical 
variability more strongly influences the LAI-related indices (Fig. 4b). 
Specifically, the strong impacts of background optical properties on LAI 
quantifications using VIs are to be expected in agricultural land with 
contrastive soil types and NPV. On the contrary, the effects of varying 
moisture contents are a much less concern. 

The different responses of NDVI to LAI with varying soil moisture 
(with IQR of about 6%) indicate that NDVI is subject to variability 
associated with soil brightness (Huete, 1988; Huete and Tucker, 1991). 
Background influences from soil-type and NPV, aside from brightness, 
also cause more differences in the responsiveness of NDVI to LAI (with 
IQR of about 8% on average), and so does MSR (with IQR of about 6.8% 
on average). For this reason, the NDVI-LAI relationships vary signifi-
cantly among different canopy backgrounds (R2 varied from 0.2 to 0.4). 
These outcomes partly explain the inconsistency of many experimental 
NDVI-LAI relationships, especially for seasonal crop growth monitoring 
at a global scale (Liu et al., 2012; Liu and Huete, 1995; Xu et al., 2020). 
Although the sLAIDI is little affected by the interference of chlorophyll 
effects (with minimal Si < 0.01%) and yielded good results for certain 
specific background scenarios, it performs very poorly with respect to 
LAI (with R2 of 0.26 ± 0.06 on average individually) in the cases of 
soil-type and NPV variation. MCARI2 is superior to NDVI, MSR, and 
sLAIDI because it shows a relatively stable response to LAI over soil 
backgrounds (with rather small IQR, < 1.5%) and reduced susceptibility 
to chlorophyll concentration (with Si < 2%). The MCARI2-LAI rela-
tionship is also less sensitive to the variability of soil background 
reflectance (as evinced by the sd of R2 < 0.01). These results corroborate 
the well-established idea that MCARI2 is a significant improvement in 
monitoring crop LAI for precision agriculture (Haboudane et al. 2004). 

In comparison with the above discussed LAI-related indices, soil- 
corrected VIs, including OSAVI and MSAVI respond to LAI with mini-
mal interference of background moisture (this is especially the case for 
the OSAVI with relatively higher sensitivity, as evinced by the median of 
Si with about 52% and IQR of about 1%). Out of the 12 VIs, only OSAVI 
displays a potential to estimate LAI despite soil-type background vari-
ations (R2 of 0.36 ± 0.004). This result confirms the earlier findings by 
Thenkabail et al. (2000) that the soil-corrected VIs are valuable when 
remote monitoring of agricultural crops are studied on widely varying 
soils. However, OSAVI and MSAVI suffer from poor performance, 
respectively, due to variations introduced by NPV, as confirmed by 
larger deviations in R2 (with sd = 0.2 and 0.3, respectively). 

4. Discussion 

This work is an attempt to unveil variations in the spectral response 
of two important agronomic variables, namely, Cab and LAI, under 
various background scenarios. It shows that background optical vari-
ability can cause significant deviations in the spectral response to Cab 
and LAI between different backgrounds and can lead to substantial al-
terations in the VI- Cab/-LAI correlations. 

4.1. Wavelength selection to background optical variability 

The use of wavelength selection for chlorophyll or LAI inversion has 
been well studied. For example, Verrelst et al. (2016a) pointed out that 
Cab is reasonably well correlated with reflectance at 500, 564, 710, and 
714 nm. Zhang et al. (2021) suggested the sensitivity wavelengths at 
455, 545, 571, 615, 641, 662, 706, 728, and 756 nm for the retrieval of 
Cab. Concerning LAI, the sensitive spectrum were extracted from the 680 
nm and 910 nm (Thenkabail et al., 2002), 740 nm (Horler et al., 1983), 
970 nm and 1725 nm (Le Maire et al., 2008) wavelength. Even so, in 
contrast to earlier findings only analyzing a scenario with a single soil 
type, our analyses conclude that background optical variability may 
result in inconsistencies in the specific feature-sensitive wavelengths 
chosen over different sites (environments and conditions), further sup-
porting the idea of Mitchell et al. (2012), who using in-situ data figured 
out the selected wavelengths particularly affected by NPV. As Table 3 
shown, the chlorophyll-sensitive peak of canopy spectra in the visible 
spectral region is observed to have a “blue shift” (towards shorter 
wavelengths) due to background variability associated with soil-type 
(the peak located at 560 nm) and NPV (the peak located at 570 nm). 
In contrast, the peak (at 595 nm) is detected as a “redshift” (towards 
longer wavelengths) because of background variations linked to mois-
ture contents, whereas the highest sensitivity occurred at 585 nm with a 
fully absorptive background. The maximum sensitivity of canopy 
spectra in the red-edge range of 690 to 730 nm shifts toward a longer 
wavelength only in the cases of soil-type (at 704 nm) and NPV (at 700 
nm), as compared to its peak at 695 nm with a fully absorbing back-
ground. Consequently, there remains a lack of universality and consis-
tency in the selection of the feature-sensitive wavebands as remote 
sensing of agriculture frequently involves the measurement of soil and 
non-vegetation components, which alter plants’ spectral characteristics, 
especially over the semi-arid agricultural landscape where mixed 
soil-plant litter/residues. 

Although the “lambda-by-lambda” band-optimization algorithm 
could, in principle, determine the sensitive bands for a given experi-
mental dataset (e.g., Thenkabail et al., 2004; Yu et al., 2014), it is suit-
able merely for field-scale measurements and not for large-scale 
monitoring. The spectral-band selection using Gaussian process regres-
sion (Verrelst et al., 2016a), random forest regression (Liu et al., 2019), 
and even multi-method ensembles consisting of partial least squares, 
random forest, and support vector machine regression (Feilhauer et al., 
2015) seem more appropriate for band optimizations because of their 
capacity for band-ranking over very large datasets. Unfortunately, pre-
vious band-selection experiments have only put slight emphasis on the 
effects of variations in the spectral response of canopies with different 
backgrounds. Appropriate knowledge of background spectra is valuable 
for accurate discrimination of sensitivity or insensitivity bands from 
continuous spectra with narrow bandwidth. In future research, the 
spectral behavior of canopies with various backgrounds such as those 
given here may serve as prior knowledge to select an optimal set of 
spectral bands and thus improve the estimation of LAI and Cab, partic-
ularly using spectral mixture analysis (e.g., Tits et al., 2013) or RTM 
inversion (e.g., Atzberger et al., 2013). 

4.2. Applicability of vegetation indices under various backgrounds 

The studied background factors lead to changes in VIs for canopies 
with the same leaf optical properties and LAI (Barillé et al., 2011). Our 
analyses further reveal that the impacts of different backgrounds on the 
VIs’ sensitivities, as well as on the relationships between VI and agro-
nomic variables, are highly dependent on the type of background (Fig. 4 
and Fig. B). 

Compared with other chlorophyll-related indices, the performance of 
PRI was more strongly influenced by background spectra linked to soil- 
type variability, followed by NPV. Soil background effects mainly 
involve two ways (Huete et al. 1985): (1) the brightness influences 
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attributed to the variations in soil wetness, and (2) the “color” differ-
ences caused by variations of soil background material (e.g., soil type). 
Our results give an indication that PRI is more susceptible to variations 
in soil background with contrasting soil types, in agreement with the 
earlier discussion of Barton and North (2001), which may explain why 
remote sensing of photosynthesis using PRI over large areas on regional 
or national scale still remains highly uncertain (Garbulsky et al., 2011). 
A recent research by Yang (2022) suggested that the combination of 
NDVI and the soil reflectance at 531 and 570 nm may possibly 
compensate for the soil background effects on PRI. In addition, Barton 
and North (2001) also noted that background contributes to PRI for 
canopies with LAI < 3.0. Our results could not confirm this phenome-
non, as it would require an analysis of critical thresholds of vegetation 
cover corresponding to background effects using LSA, which is beyond 
the scope of the current study. 

Several authors (Main et al.,2011) pointed out that a canopy index 
modified to include the red-edge wavebands was superior to their pre-
decessors with red or NIR band reflectance. However, two 
red-edge-based spectral indices selected here (i.e., CIRE and MCAR-
I/OSAVI(705, 750)) performed not as well as expected. One of the reasons 
for this is that the background reflectance variability could confound the 
detection of the relatively subtle differences in canopy reflectance due to 
changes in leaf chlorophyll content (Daughtry et al., 2000). Another 
explanation is that CIRE and MCARI/OSAVI(705, 750) were initially 
formulated for canopy chlorophyll content variations (Gitelson et al., 
2005; Wu et al., 2008), although both indices have also been found to 
provide accurate leaf-level estimations of foliar chlorophyll content (e. 
g., Gitelson and Solovchenko, 2017; Stuckens et al., 2011). 

In contrast to other chlorophyll-related indices, our analyses show 
that the MTCI, Macc01 and LICI were highly sensitive to changes in leaf 
chlorophyll while greatly suppressing the influence of background 
variability. This confirms previous studies (e.g., Li et al., 2020; Main et 
al., 2011). However, LAI also interferes with the retrieval of leaf chlo-
rophyll content in the visible and red-edge regions. It has been shown in 
several studies (e.g., Croft et al., 2020; Qian et al., 2022) that there is a 
stratification in chlorophyll content (as measured by the MTCI) over 
regions with sparse- and dense-level vegetation cover due to the strong 
influence of LAI on MTCI. The LICI might be a plausible candidate for 
spatially-explicit monitoring of leaf chlorophyll content compared to 
MTCI over agro-pastoral transitional zones because the former is quite 
insensitive to both LAI and background variations. Nevertheless, the use 
of LICI for other vegetation types is yet to be confirmed (Chen et al., 
2022) since it was originally developed for wheat and rice (Li et al., 
2020). This paper demonstrates the potential of LICI for monitoring 
applications in wheat-like canopies and over heterogeneous agricultural 
regions. 

In terms of LAI-related VIs, background spectra – especially associ-
ated with soil-type and NPV – have been shown to impose more sig-
nificant effects on NDVI and MSR than on MCARI2 (Fig. 4b) although 
based on the same narrow bands (i.e., 670 and 800 nm). One possible 
reason is that the mathematical equations defining MCARI2 could better 
address the differences in the spectral response of each band under 
different backgrounds. Given the issue that the most relevant spectral 
information for LAI estimation varied with soil-type (Darvishzadeh et 
al., 2008a), it must be carefully considered when the NDVI-/MSR- LAI 
relationships are applied to imagery where green vegetation, soil-type, 
NPV components are aggregated. Nonetheless, MCARI2 exhibits a 
notable discrepancy in the correlations with LAI (as evinced by R2 with 
0.34 ± 0.02) due to the presence of NPV. It thus might be sub-optimum 
in cases where NPV is a significant and variable component of surface 
cover. These are interesting findings as earlier studies have mostly dis-
regarded the occurrence of non-photosynthetic materials – particularly 
the appreciable amounts of standing litter present in no-tillage fields. 
More real data analysis on the effects of NPV on MCARI2 representing 
vegetation activity (e.g., LAI) is needed in agricultural applications. 

We found that both OSAVI and MSAVI are quite insensitive to soil 

brightness, relatively insensitive to soil “color” attributed to soil-type, 
but considerably affected by NPV. Prior studies (e.g., Li et al., 2019) 
mostly focused on evaluating soil brightness and saturation effects for 
estimating LAI using soil-corrected VIs. However, aside from soil, the 
background of a given site consists of litter, crop residues, senescent 
grass, and sometimes moss. The optical properties of these materials 
differ greatly from that of the soil. More analysis is thus needed 
regarding the impact of NPV on soil-corrected VIs in areas with abun-
dant non-photosynthetic materials. Our results imply that, regardless of 
the robustness of these indices based on the soil line concept (Baret et al., 
1993), the background effects of soil-type and NPV cannot be removed 
entirely. 

In conclusion, this research provides a physically-based interpreta-
tion of why Cab or LAI retrievals have low accuracy in some study sites 
(e.g., Pisek et al., 2010). This can be at least partially attributed to the 
background spectra. To mitigate the effects of background spectral 
variations in the retrieval of terrestrial vegetation bio-geophysical 
properties, multi-angle spectral data (Gemmell, 2000) and new 
VI-correction methods have been recommended. The latter can be based 
on the fraction of canopy cover (e.g., Li et al., 2016; Van Beek et al., 
2015; Yao et al., 2014) or on the fractions of NPV and soil background 
(Verrelst et al., 2008). 

4.3. Potential and Limitations 

Numerical experiments based on radiation transfer simulations are 
essential to understand the spectral response of biophysical and 
biochemical parameters with different canopy backgrounds (e.g., Mal-
enovský et al., 2008; Vincini et al., 2008). A unique advantage of this 
modelling is the ability to cover a wide range of scenarios while cir-
cumventing uncertainties related to measurement errors (Verrelst et al., 
2010). Although the analysis presented here is based on the simulated 
data, our investigations showed that simulated and ground truth mea-
surements of wheat canopy spectra are generally in good agreement (see 
Appendix B). These results suggest that our simulations are reliable 
representations of the contribution of Cab and LAI on wheat-like canopy 
reflectance. In real-world experiments, explicitly quantifying these dy-
namic sensitivities is difficult since such wide-ranging and contrasting 
conditions cannot be easily generated through field campaigns. Our 
detailed analyses provide a good reference for other research groups 
studying the impacts of subsets of the backgrounds. 

Considering the broad range of simulated vegetation properties (in 
Table 1), we expect these findings to be useful for remotely sensed 
monitoring of wheat and other crops with similar canopy structures to 
wheat (e.g., rice, barley, soybean, etc.). Similarly, as a wide range of 
background spectra were considered (Fig. 1), many different back-
ground effects could be included. Note that, even though the LAI values 
defined here had a large range (0.1 to 10), due to PROSAIL model 
without taking into account LAI phenology patterns at specific growth 
status, it might not present the dynamics of vegetation spectral response 
to seasonal canopy-background reflectance. A GSA involving coupled 
crop growth and radiative transfer models (e.g., Thorp et al., 2012) 
would be a plausible way to evaluate the spectral-temporal behavior of 
crops to background properties. 

Although the contribution of soil to canopy reflectance is often re-
ported to be negligible for LAI > 3 or 4 (Goel, 1988), the results of our 
study showed that they still affect the crop canopy spectra (Fig. 5, Ap-
pendix C). Therefore, it is necessary to consider the spectral response of 
agronomic variables even in areas with dense vegetation coverage. 
Fig. 5 also demonstrates the need for a more comprehensive soil spectral 
library in which for a given soil type, many different water contents have 
been measured. Due to the lack of such data we had to run simulations 
for (i) soil type effects, and (ii) soil wetness effects separately from each 
other, leading to the two distinct sets shown in Fig. 5 with mutually no 
overlap. 
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5. Conclusion 

Unravelling the spectral response of agronomic variables despite 
different backgrounds is of fundamental importance for an effective 
Earth observation (EO)-based monitoring of crop physiological and 
phenological status. With the availability of spaceborne imaging spec-
trometers, this need further increases, as researchers and practitioners 
can now use/optimize subsets of spectral bands for their specific ap-
plications. In this respect, we highlighted that the contribution of each 
parameter to the spectral behavior of wheat-like canopies varies with 
the optical properties of canopy background, particularly associated 
with soil-type and NPV whose impacts are more significant than that 
caused by background moisture. 

In terms of remotely-sensed chlorophyll content estimates, our 
analysis suggests that the canopy reflectance measurements at the 560 
and 704 nm are desirable due to their relatively high sensitivity to Cab, 
with minimum soil impact. On the other hand, the canopy spectra in the 
interval 774–900 nm is recommended for LAI estimation only for more 
or less wet background surfaces, while its sensitivity to LAI shows 
remarkable differences among cases of background soil-type and NPV. 
Comparing analyses of the sensitivities and correlations of VIs to Cab and 
LAI for different canopy backgrounds demonstrates that background 
reflectance variability is a critical factor leading to substantial un-
certainties in the estimation of Cab and LAI using EO data. Our analysis 
points out that LICI, Macc01 and OSAVI, MCARI2 potentially provide 
better estimates of Cab and LAI, respectively, because of their higher 
responsiveness to those agronomic variables at a reduced background 
influence. Notwithstanding, a single spectral index providing a generic 
algorithm for the two agronomic variables under all “disturbance fac-
tors” (comprising soil-type, NPV, irrigated components, etc.), is not 
realistic. An area-wide canopy background classification based on a 
priori landscape stratification thus seems indispensable for large-scale 
mapping of leaf chlorophyll content and LAI. 

Additionally, our findings help to improve understanding of the 
subtle changes in the relationships between spectral features and Cab and 
LAI over various background scenarios, which is one of the fundamental 
requirements for their successful retrieval via the current generation of 
hyperspectral satellite sensors (e.g., GF-5/AHSI, PRISMA, EnMAP), and 
those anticipated in the near future (e.g., CHIME, HISUI), and is thus 
pivotal for accurately diagnosing crop growth status. Although our 
findings need to be verified further with real-world experiments and/or 
actual imageries, this aspect is beyond the scope of the current study and 
will be addressed in our future studies. 
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Appendix A 

To further study background effects, the differences of the spectral response of a canopy over scattering backgrounds (shown in Fig. 3) was 
compared to that over a fully absorbing background (shown in Fig. A). Canopy reflectance in the 550–710 nm spectral region exhibits divergent 
responses to changes in Cab between scattering backgrounds through comparison with those sensitivities of the totally absorbing background: the Si is 
slightly higher (approximately 0–9%) over wet backgrounds and considerably lower (around 0–29%) across contrastive soil-type and NPV. This Si 
difference is most pronounced in the red range (660–680 nm), notably with soil-type cases (over 20% lower than those Si with a completely absorbing 

Fig. A. Main effect and interactions of the EFAST sensitivity analysis on vegetation biophysical and biochemical parameters with a totally absorbing background.  
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background). This result corresponds to early findings that experimental measurements of red reflectance are susceptible to the effects of variable 
irradiance and background (Curran & Milton, 1983). Besides, equivalent water thickness (Cw) explains about 31%–61% of the canopy reflectance 
variation in the SWIR wavelength longer than 1880 nm (termed “SWIR2” hereafter) under the zero-background case, much larger than LAI does with a 
contribution less than 12%. This result is an apparent difference with GSA results only concerning one specific soil background that LAI governed over 
50% of the variation in SWIR2, greater than Cw does (e.g., Xiao et al. 2014; Verrelst et al., 2015a, 2016b). This inconsistency is tentatively attributed to 
the fact that the background has a much higher single-scattering albedo in the SWIR2 spectral part than does green vegetation (Asner, 1998), so the 
SWIR2 reflectance of plant canopy mixed with the background is more sensitive to changes in LAI than that under the zero-background case in the 
absence of specular reflection. Furthermore, the sensitivity of canopy spectra in the NIR plateau (800–1300 nm) to LAI decreases dramatically while 
the sensitivity of red reflectance in the wavelength interval [665, 680 nm] and SWIR2 reflectance increases compared to those responsiveness in a 
totally absorbing background, respectively. 

The comparison of the response of VIs over the scattering backgrounds with their “pure” counterparts responsiveness under fully absorbing 
background (as presented in Fig. B and C) illustrates the performance of the VIs (especially LAI-related indices) could be misleading due to background 
optical properties. The sensitivity of NDVI to LAI in the zero-background case (Si = 7%) is far less than that with canopy backgrounds. Theoretically, 
the NDVI relies on the spectral contrast between red and NIR signatures (Rahman et al., 2004). The NDVI-LAI insensitivity can be accounted for by the 
fact that the red-NIR contrast is fairly uniform under a 100% absorbing background due to multiple interactions within the canopy only, which is 
similar to the saturation of NDVI at high values of LAI. This result is in agreement with the findings of Gao et al. (2000). While the multiple scattering 
process in the vegetation background theoretically enhances the response of NDVI to LAI changes and thus the NDVI-LAI relationship has a larger 
correlation coefficient than that under totally absorbing background (R2 = 0.04). Likewise, the sensitivities and correlations of MSR-LAI and 
sLAIDI-LAI relationships are found to be larger than that with totally absorbing background (Si = 12% and 14%, R2 = 0.09 and 0.11, respectively). 
Note that this positive contribution of canopy background to spectral response of VIs only is observed for LAI-related VIs including NDVI, MSR, and 

Fig. B. Results of the global sensitivity analysis (the mean values of the first-order sensitivity indices) for each of the selected vegetation indices across (a) scattering 
and (b) fully absorbing backgrounds. 

Fig. C. Sensitivity and correlation of VI to (a) Cab and (b) LAI under conditions of a completely absorbing background.  
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sLAIDI responsiveness to LAI but are rarely found in VIs related to chlorophyll content. Overall, the results of the comparative analysis reveal that the 
contributions of agronomic variables to plant-canopy spectra depend on wavelength and differ considerably with the background scenarios. Such 
information is needed to the understanding of the narrowband EO data discerning subtle, but import, features related to plant phenotypes. 

Appendix B 

The performances of the PROSAIL are evaluated by comparison between measured and simulated reflectance. Similar works also have been carried 
out by Schlerf and Atzberger (2006) and Darvishzadeh et al. (2008b). The results (Fig. D) illustrate a good agreement between the measured and 
modelled wheat canopy spectra. 

Appendix C 

In the literature it is often stated that the contribution of soil to canopy reflectance might be negligible for LAI > 3 or 4. We tested this assumption 
further in our study through modelling. The relative changes in canopy reflectance (Diff) under different LAI values was calculated based on the 
equation (Sun et al., 2020): 

Diff =
⃒
⃒
⃒
⃒
Ref2 − Ref1

Ref1
× 100%

⃒
⃒
⃒
⃒

where Ref1 is the simulated canopy reflectance under one background reflectance, while Ref2 is corresponding reflectance under another background 
reflectance. 

Figs. E and F show that background optical variability continues to influence the canopy reflectance even when LAI ≥ 6, even though such subtle 
differences in canopy reflectance might not be measurable from an optical sensor due to noise etc. 

Fig. D. Measured (continuous line) and modelled (dashed black line) wheat canopy reflectance for different values of canopy LAI.  
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Verger, A., Vigneau, N., Chéron, C., Gilliot, J.M., Comar, A., Baret, F., 2014. Green area 
index from an unmanned aerial system over wheat and rapeseed crops. Remote Sens. 
Environ. 152, 654–664. https://doi.org/10.1016/j.rse.2014.06.006. 

Verrelst, J., Rivera, J.P., Gitelson, A., Delegido, J., Moreno, J., Camps-Valls, G., 2016a. 
Spectral band selection for vegetation properties retrieval using Gaussian processes 
regression. Int. J. Appl. Earth Obs. Geoinf. 52, 554–567. https://doi.org/10.1016/j. 
jag.2016.07.016. 

Verrelst, J., Rivera, J.P., van der Tol, C., Magnani, F., Mohammed, G., Moreno, J., 2015a. 
Global sensitivity analysis of the SCOPE model: what drives simulated canopy- 
leaving sun-induced fluorescence? Rem. Sens. Environ. 166, 8–21. https://doi. 
org/10.1016/j.rse.2015.06.002. 

Verrelst, J., Schaepman, M.E., Koetz, B., Kneubühler, M., 2008. Angular sensitivity 
analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. 
Environ. 112 (5), 2341–2353. https://doi.org/10.1016/j.rse.2007.11.001. 

Verrelst, J., Schaepman, M.E., Malenovský, Z., Clevers, J.G.P.W., 2010. Effects of woody 
elements on simulated canopy reflectance: implications for forest chlorophyll 
content retrieval. Remote Sens. Environ. 114, 647–656. https://doi.org/10.1016/j. 
rse.2009.11.004. 

Vincini, M., Frazzi, E., D’Alessio, 2008. A broad-band leaf chlorophyll vegetation index 
at the canopy scale. Precis. Agric. 9, 303–319. https://doi.org/10.1007/s11119-008- 
9075-z. 

Wang, S., Yang, D., Li, Z., Liu, L., Huang, C., Zhang, L., 2019. A global sensitivity analysis 
of commonly used satellite-derived vegetation indices for homogeneour canopies 
based on model simulation and random forest learning. Remote Sens. (Basel) 11, 
2547. https://doi.org/10.3390/rs11212547. 

Widlowski, J.L., Mio, C., Disney, M., Adams, J., Andredakis, I., Atzberger, C., et al., 2015. 
The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: 
actual canopy scenarios and conformity testing. Remote Sens. Environ. 169, 
418–437. https://doi.org/10.1016/j.rse.2015.08.016. 

Wu, C., Niu, Z., Tang, Q., Huang, W., 2008. Estimating chlorophyll content from 
hyperspectral vegetation indices: modeling and validation. Agric. For. Meteorol. 
148, 1230–1241. https://doi.org/10.1016/j.agrformet.2008.03.005. 

Xiao, Y., Zhao, W., Zhou, D., Gong, H., 2014. Sensitivity analysis of vegetation 
reflectance to biochemical and biophysical variables at leaf, canopy, and regional 
scales. IEEE Trans. Geosci. Remote Sens. 52, 4014–4024. https://doi.org/10.1109/ 
TGRS.2013.2278838. 

Xu, D., An, D., Guo, X., 2020. The impact of non-photosynthetic vegetation on LAI 
estimation by NDVI in mixed grassland. Remote Sens. (Basel) 12, 1979. https://dio. 
org/10.3390/rs12121979. 

Xu, J., Meng, J., Quackenbush, L.J., 2019a. Use of remote sensing to predict the optimal 
harvest date of corn. Field Crops Research 236, 1–13. https://doi.org/10.1016/j. 
fcr.2019.03.003. 

Xu, M., Liu, R., Chen, J.M., Liu, Y., Shang, R., Ju, W., et al., 2019b. Retrieving leaf 
chlorophyll content using a matrix-based vegetation index combination approach. 

L. Gao et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.ecolind.2015.11.005
https://doi.org/10.1016/j.ecolind.2015.11.005
https://doi.org/10.1109/TGRS.2018.2868138
https://doi.org/10.1109/TGRS.2018.2868138
https://doi.org/10.1016/0034-4257(93)90104-6
https://doi.org/10.1016/0034-4257(93)90104-6
https://doi.org/10.1016/j.rse.2015.04.032
https://doi.org/10.1016/j.rse.2012.04.002
https://dio.org/10.1109/TGRS.1995.8746027
https://doi.org/10.1016/j.rse.2018.05.035
https://doi.org/10.1029/2018JD028415
https://doi.org/10.1016/S1011-1344(01)00145-2
https://doi.org/10.1016/S1011-1344(01)00145-2
https://doi.org/10.1016/j.isprsjprs.2011.08.001
https://doi.org/10.1016/j.isprsjprs.2011.08.001
https://doi.org/10.1016/j.rse.2006.02.028
https://doi.org/10.1016/j.rse.2006.02.028
https://doi.org/10.1016/j.rse.2019.05.015
https://doi.org/10.1016/j.rse.2019.05.015
https://doi.org/10.1016/j.rse.2012.05.002
https://doi.org/10.1016/j.rse.2012.05.002
https://doi.org/10.3390/rs11202418
https://doi.org/10.1016/j.rse.2014.01.023
https://doi.org/10.1029/2009JG001138
https://doi.org/10.1016/0034-4257(94)90134-1
https://doi.org/10.1016/0034-4257(94)90134-1
https://doi.org/10.1016/j.agrformet.2022.109000
https://doi.org/10.3390/rs8080660
https://doi.org/10.3390/rs8080660
http://refhub.elsevier.com/S0168-1923(22)00365-3/sbref0072
http://refhub.elsevier.com/S0168-1923(22)00365-3/sbref0072
https://doi.org/10.1016/0034-4257(95)00186-7
https://doi.org/10.1016/0034-4257(95)00186-7
http://refhub.elsevier.com/S0168-1923(22)00365-3/sbref0074
http://refhub.elsevier.com/S0168-1923(22)00365-3/sbref0074
https://doi.org/10.1016/j.envsoft.2010.04.012
https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/10.1016/j.cpc.2009.09.018
http://refhub.elsevier.com/S0168-1923(22)00365-3/sbref0077
http://refhub.elsevier.com/S0168-1923(22)00365-3/sbref0077
https://doi.org/10.1016/j.rse.2005.10.006
https://doi.org/10.1016/S0034-4257(00)00128-0
https://doi.org/10.1007/s11430-013-4808-x
https://doi.org/10.1007/s11430-013-4808-x
http://simlab.jrc.ec.euro
https://doi.org/10.1016/j.agrformet.2011.03.006
https://doi.org/10.1109/TGRS.2019.2940826
https://doi.org/10.1016/j.rse.2003.11.018
https://doi.org/10.1016/S0034-4257(99)00067-X
http://refhub.elsevier.com/S0168-1923(22)00365-3/sbref0086
http://refhub.elsevier.com/S0168-1923(22)00365-3/sbref0086
http://refhub.elsevier.com/S0168-1923(22)00365-3/sbref0086
https://doi.org/10.1016/j.rse.2012.05.013
https://doi.org/10.1016/j.rse.2012.10.006
https://doi.org/10.1016/j.jag.2014.08.009
https://doi.org/10.1016/j.rse.2014.06.006
https://doi.org/10.1016/j.jag.2016.07.016
https://doi.org/10.1016/j.jag.2016.07.016
https://doi.org/10.1016/j.rse.2015.06.002
https://doi.org/10.1016/j.rse.2015.06.002
https://doi.org/10.1016/j.rse.2007.11.001
https://doi.org/10.1016/j.rse.2009.11.004
https://doi.org/10.1016/j.rse.2009.11.004
https://doi.org/10.1007/s11119-008-9075-z
https://doi.org/10.1007/s11119-008-9075-z
https://doi.org/10.3390/rs11212547
https://doi.org/10.1016/j.rse.2015.08.016
https://doi.org/10.1016/j.agrformet.2008.03.005
https://doi.org/10.1109/TGRS.2013.2278838
https://doi.org/10.1109/TGRS.2013.2278838
https://dio.org/10.3390/rs12121979
https://dio.org/10.3390/rs12121979
https://doi.org/10.1016/j.fcr.2019.03.003
https://doi.org/10.1016/j.fcr.2019.03.003


Agricultural and Forest Meteorology 326 (2022) 109178

15

Remote Sensing of Environment 224, 60–73. https://doi.org/10.1016/j. 
rse.2019.01.039. 

Yang, P., 2022. Exploring the interrelated effects of soil background, canopy structure 
and sun-observer geometry on canopy photochemical reflectance index. Remote 
Sens. Environ. 279, 113133 https://doi.org/10.1016/j.rse.2022.113133. 

Yao, X., Ren, H., Cao, Z., Tian, Y., Cao, W., Zhu, Y., Cheng, T., 2014. Detecting leaf 
nitrogen content in wheat with canopy hyperspectrum under different soil 
backgrounds. Int. J. Appl. Earth Obs. Geoinf. 32, 114–124. https://doi.org/10.1016/ 
j.jag.2014.03.014. 

Yu, K., Lenz-Wiedemann, V., Chen, X., Bareth, G., 2014. Estimating leaf chlorophyll of 
barley at different growth stages using spectral indices to reduce soil background 

and canopy structure effects. ISPRS J. Photogramm. Remote Sens. 97, 58–77. 
https://doi.org/10.1016/j.isprsjprs.2014.08.005. 

Zhang, L., Guo, C.L., Zhao, L.Y., Zhu, Y., Cao, W.X., Tian, Y.C., et al., 2016. Estimating 
wheat yield by integrating the WheatGrow and PROSAIL models. Field Crops Res. 
192, 55–66. https://doi.org/10.1016/j.fcr.2016.04.014. 

Zhang, Y., Hui, J., Qin, Q., Sun, Y., Zhang, T., Sun, H., Sun, H., 2021. Transfer-learning- 
based approach for leaf chlorophyll content estimation of winter wheat from 
hyperspectral data. Remote Sens. Environ., 112724 https://doi.org/10.1016/j. 
rse.2021.112724. 

L. Gao et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.rse.2019.01.039
https://doi.org/10.1016/j.rse.2019.01.039
https://doi.org/10.1016/j.rse.2022.113133
https://doi.org/10.1016/j.jag.2014.03.014
https://doi.org/10.1016/j.jag.2014.03.014
https://doi.org/10.1016/j.isprsjprs.2014.08.005
https://doi.org/10.1016/j.fcr.2016.04.014
https://doi.org/10.1016/j.rse.2021.112724
https://doi.org/10.1016/j.rse.2021.112724

	Hyperspectral response of agronomic variables to background optical variability: Results of a numerical experiment
	1 Introduction
	2 Materials and methods
	2.1 Background spectra
	2.2 Global sensitivity analysis

	3 Results
	3.1 Variations of canopy spectral signatures to chlorophyll and LAI for different background optical properties
	3.2 Sensitivities and correlations of VIs for various backgrounds

	4 Discussion
	4.1 Wavelength selection to background optical variability
	4.2 Applicability of vegetation indices under various backgrounds
	4.3 Potential and Limitations

	5 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Appendix A
	Appendix B
	Appendix C
	References


