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Abstract: Accurate urban morphology provided by Local Climate Zones (LCZ), a universal surface 

classification scheme, offers opportunities for studies of urban heat risk, urban ventilation, and 

transport planning. In recent years, researchers have attempted to generate LCZ maps worldwide 

with the World Urban Database and Access Portal Tools (WUDAPT). However, the accuracy of LCZ 

mapping is not satisfactory and cannot fulfill the quality demands of practical usage. Here, we 

constructed a high-quality sample dataset from Chinese cities and presented a patch-based 

classification framework that employs chessboard segmentation and multi-seasonal images for LCZ 

mapping. Compared with the latest WUDAPT method, the overall accuracy for all LCZ types (OA) 

and urban LCZ types (OAu) of our framework increased by about 10% and 9%, respectively. 

Furthermore, based on the analysis of population distribution, we first gave the population density 

of different built-up LCZs of Chinese cities and found a hierarchical effect of population density 

among built-up LCZs in different size cities. In summary, this study could serve as a valuable 

reference for producing high-quality LCZ maps and understanding population distribution 

patterns in built-up LCZ types. 

Keywords: local climate zones; patch-based classification; multi-seasonal images; WUDAPT;  

population distribution pattern; Chinese cities 

 

1. Introduction 

In recent decades, the world has experienced an unprecedented process of 

urbanization. According to the latest report of the United Nations Habitat (UNH), 

although urban areas account for only 3% of the world’s land area, 55% of the population 

lives in urban areas; this number is expected to increase to 68% by 2050 [1]. Rapid and 

unplanned urbanization, coupled with the challenges brought by climate change, can lead 

to environmental and health problems [2,3] in many cities, thereby affecting the 

sustainable development of cities. The lack of globally consistent data on cities makes it 

difficult to understand the overall impact of urbanization. However, remote sensing 

technology provides a source of data for this challenge; especially, the Landsat-8 satellite 

of the National Aeronautics and Space Administration (NASA) and the Sentinel-2 satellite 

of the European Space Agency (ESA) provide continuous, reliable, and quality-controlled 

earth observation data that are free and open. 

Through remote sensing data and artificial intelligence techniques, some scholars 

have generated several datasets on the extent of global urban boundaries, such as Global 

Urban Footprint (GUF) [4], Global Human Settlement Layer (GHSL) [5], and Global 

Artificial Impervious Area (GAIA) [6], which provide a binary mask of urban and non-
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urban surfaces. In addition, there are some land use/land cover (LULC) datasets, such as 

the global land cover map (GLC) [7,8] and ESA Climate Change Initiative Land Cover 

(CCI-LC) [9], which represent urban areas through impervious surfaces. Through these 

global urban boundary datasets and LULC datasets, the growth and rate of global 

urbanization can be monitored at the city scale. However, many international efforts to 

address the issues of urbanization, such as the United Nation’s call for “Sustainable Cities 

and Communities”, are based on accurate measurements of urban morphological and 

demographic figures that can provide key scientific foundations for allocating valuable 

resources for a wide range of stakeholders [10]. These binary urban masks and LULC 

datasets cannot provide sufficient spatial details to describe cities’ internal structures and 

functions. 

To address this issue, Stewart and Oke [11] proposed a Local Climate Zone (LCZ) 

classification system, which is composed of ten built-up, or artificial, LULC types (LCZs 

1–10; Figure 1) and seven natural LULC types (LCZs A-G; Figure 1). The LCZ types are 

defined as areas with uniform surface cover, structure, material, and human activity, 

spanning hundreds of meters to several kilometers on the horizontal scale [11]. Since the 

LCZ scheme was originally designed for standardizing the exchange of urban 

temperature observations, urban heat island studies under the LCZ classification scheme 

have been conducted in more than 130 cities worldwide in recent years [12]. At the same 

time, the LCZ scheme also provides a numerical description of urban canopy parameters 

that are rare in traditional LULC classification but are key in the urban ecosystem. This 

has made LCZ data attractive for a wide range of applications, including urban planning 

[13,14], urban energy demand modeling [15,16], urban ventilation simulation [17–19], and 

outdoor thermal comfort monitoring [20,21]. 

The LCZ classification scheme was originally designed for urban climatic studies 

[11,22], and the reference population range for each LCZ type was not given [23]. 

However, LCZ maps can also be used to better understand the urban population 

distribution, as the built-up LCZs have relatively distinct traits in building size, height, 

density, and usage. Demuzere et al. [23] found the population data in the LCZs agreed 

with their classification when they mapped the continental United States into LCZ types. 

In addition, Hu et al. [24] combined LCZ maps with population density to analyze urban 

land consumption at an intra-urban spatial scale over 40 cities worldwide. However, few 

studies have examined the relationship between LCZs and population data on a national 

scale, especially in China, the world’s most populous country. Furthermore, it is unknown 

how different city sizes affect population distribution in LCZs. 

There are many methods for generating LCZ maps, including traditional sampling 

through field surveys, geographic information system (GIS) approaches, and remote 

sensing image classification approaches [25–30]. Classification based on remote sensing 

images provides a fast and economical method for LCZ mapping and has been widely 

used in prior studies [31–36]. Bechtel et al. [26] designed a pixel-based supervised 

classification approach, which uses Landsat-8 images and the random forest classification 

algorithm [37], to generate an LCZ map with a resolution of 100 m. The method was used 

by the World Urban Database and Access Portal Tools (WUDAPT) project to create a 

database for uploading LCZ samples and then generated LCZ maps of different cities 

around the world [38]. Demuzere et al. [39] then designed an online platform (LCZ-

Generator) to simplify the default WUDAPT classification workflow further. Only 150 

cities worldwide have had their LCZ map and corresponding samples uploaded to the 

WUDAPT website [39], and these maps may be quickly outdated due to rapid LULC 

changes occurring in/around urban areas. Although more and more training area sets 

have been submitted to the LCZ Generator recently, the samples from different cities 

cannot be consistent. Currently, only Europe [40] and the continental United States [23] 

have a complete LCZ map. Thus, there is a need for a high-quality training sample set 

with label information to generate a complete LCZ map of China. 
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Figure 1. Classification of local climate zones and range of urban canopy parameters based on [11]. 

(Note: The top-left corner of each LCZ type is the schematic drawings given by [41]. The top-right 

corner of each LCZ type is the representative high-resolution images from Google Earth. SVF means 

sky view factor; BSF means building surface fraction; SA means surface admittance; BH means 

height of roughness elements; ISF means impervious surface fraction; A means surface albedo; AR 

means aspect ratio; PSF means pervious surface fraction; AH means anthropogenic heat.). 

Different quality evaluation results show that the accuracy of LCZ mapping obtained 

by the WUDPAT method is often not high [41,42]. The WUDAPT method is pixel based, 

which relies heavily on spectral information of image pixels, i.e., electromagnetic 

reflectance at different wavelengths. However, due to the differences in cultural and 

physical environmental factors (e.g., construction materials and vegetation types), LCZ 
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types in different cities often have different spectral characteristics. Therefore, LCZ 

classification approaches based only on spectral information of pixels alone cannot 

achieve high accuracy. Remote sensing researchers have found that texture information is 

helpful for image classification tasks [43], particularly when image pixels are smaller than 

the LULC features of interest (as individual pixels represent only a portion of the feature 

of interest in this case). Patch-based classification approaches can better take advantage of 

contextual information provided by neighboring pixels, e.g., local spectral heterogeneity. 

Some scholars have put forward deep learning methods such as CNN and FCN [35,36,44], 

which also incorporate patch-based features, or utilized auxiliary data such as building 

height data [32,45] to improve LCZ mapping accuracy. However, because of limitations 

in the training data or image data available in most cities, these methods are not universal 

at present. At the same time, the classification results vary significantly with the spatial 

scale at which LCZ maps are produced [26,41]. Stewart and Oke [11] suggested that the 

minimum radius of each LCZ should be between 200–500m. Liu et al. [44] used Sentinel-

2 imagery with a 10 m spatial resolution for LCZ mapping and found that the optimal 

image sizes were from 32 to 64. Zheng et al. [28] conducted LCZ mapping in Hong Kong 

and found that the optimal mapping scale was 300 m. Aside from the use of contextual 

information from neighboring pixels, many studies have shown that multi-seasonal 

information from remote sensing imagery can help optimize the mapping results of land 

cover classification [46,47] and significantly improve the cartographic accuracy of LCZ 

classification [36,48,49]. Based on the above information from previous works, it is evident 

that the 300 m resolution, multi-temporal and patch-based LCZ classification framework 

could be successful for LCZ mapping across multiple cities. 

This study aimed to: (1) construct a high-quality training sample set with label 

information in 34 provincial capital cities of China, (2) propose a classification framework 

to improve LCZ mapping accuracy, (3) study population distribution in LCZs on a 

national scale, and (4) further explore how different city sizes affect population 

distribution in LCZs. To achieve these objectives, we outlined and labeled sample 

polygons using high-resolution images from Google Earth. Then, we proposed an LCZ 

classification framework based on chessboard segmentation and multi-seasonal Sentinel-

2 images on a 300 m grid and used this framework to generate LCZ maps in 34 provincial 

capital cities of China. Then, an overlay analysis was performed to analyze the relation 

between LCZ classification results with the population data on a national scale. Finally, 

the influence of city size on population distribution in LCZ was analyzed by classifying 

cities based on the number of urban permanent populations. 

2. Materials and Methods  

2.1. Study Aera 

China is a vast and populous country located in the east of Asia and on the west coast 

of the Pacific Ocean (73°33′–135°05′ E; 3°51′–53°33′ N), as shown in Figure 2. Due to the 

huge differences in geographical conditions, China’s climate is complex and diverse. 

Climatic types include tropical climates in the south to cold temperate climates in the 

north and plateau mountain climates in the Qinghai-Tibet Plateau. The southeastern part 

of China is densely populated, and the northwestern part is sparsely populated. The 

diversity of climate and the uneven distribution of population lead to huge differences in 

urban landscapes in China. 

Chinese cities were classified according to the new city size classification standard 

issued by China [50] and were divided into four sizes according to the urban permanent 

residents in the study area (Table S1). In the analysis of Section 3.3, we excluded Macao 

and Lasa because these two cities differ greatly in urban form apart from the similarities 

in terms of population. Meanwhile, the number of medium-sized cities is too small for the 

results to be representative. 
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In this study, we conducted LCZ mapping and population distribution analysis in 34 

major Chinese cities. These 34 cities represent municipalities or provincial capitals located 

in different climatic zones and contain a variety of complex urban forms and landscapes. 

The extent of the study area of each city considered for our analysis was determined by 

the GUB dataset and the city’s administrative boundary to reduce the non-urban areas 

significantly. We show the boundary derived for Wuhan in Figure 2 as an example. 

 

Figure 2. The geographic locations of the 34 Chinese cities. (Note: the gray line indicates the 

provincial boundary; the green line indicates the municipal boundary; the blue line indicates the 

global urban boundary; we take Wuhan city as an example to illustrate the determination of the 

research boundary, the red line.) 

2.2. Datasets 

In this study, we used Sentinel-2 surface reflectance data [51,52] for remote sensing 

image analysis and LCZ mapping. At present, Sentinel-2 is the highest resolution freely 

available satellite imagery, with spatial resolutions ranging from 10 to 60 m depending on 

the spectral band. Another benefit of Sentinel-2 data is that imagery is acquired of most 

locations on the Earth’s surface every 5 days with two complementary satellites. Thus, 

these data are suitable for LCZ mapping. As previously mentioned, multi-seasonal remote 

sensing data is likely to improve LCZ mapping accuracy. Cloud cover, however, often 

obstructs the sensor’s view of the ground in individual Sentinel-2 images. To mitigate 

cloud contamination effects, we generated seasonal mosaic images from the original 

Sentinel-2 images. The dates of multi-seasonal composite images used in this study are 

shown in Table S2 (136 seasonal composite images in total). 

In addition to Sentinel-2 imagery, we also used additional geospatial datasets for 

analysis of the 34 urban areas. As mentioned previously, the GUB data and the 

administrative boundaries of cities are used to determine the research boundaries of each 

city. Population count data [53] was used (in combination with the LCZ maps we 

generated) to analyze the population distribution of each city at the intra-urban scale. The 

detailed methods for preprocessing Sentinel-2 and population data are presented in 

Section 2.3.1. 

2.3. Methods 

The flow chart of this study is shown in Figure 3. We first preprocessed sentinel-2 

images for LCZ mapping and population counts for population distribution analysis in 

Section 2.3.1. The process of constructing the LCZ sample dataset for Chinese cities is 

described in Section 2.3.2. To achieve high-quality mapping of LCZ in 34 cities, a patch-

based LCZ classification scheme (Scheme 1, S1) based on chessboard segmentation and 

multi-seasonal images is proposed in Section 2.3.3. To verify the effectiveness of our 
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scheme, the latest classification methodology (Scheme 2, S2) from the WUDAPT website 

was chosen for comparison, and the details are shown in Section 2.3.4. Finally, the analysis 

of population distribution based on LCZ types is carried out (Supplementary Materials 

Figure S1). The details are shown in Section 2.3.5.  

 

Figure 3. The workflow of LCZ classification method (S1 and S2), sample data processing, accuracy 

assessment, and application analysis. 

2.3.1. Data Preprocessing 

To obtain Sentinel-2 images of China’s provincial capital cities, Sentinel-2 L2A data 

was acquired using the Google Earth Engine web platform [54]. First, the Sentinel-2 L2A 

images were filtered by the regions of interest, dates, and cloud threshold to obtain the 

initial image datasets. The result of this was a dense stack of Sentinel-2 images having less 

than 10% cloud cover. Then, clouds remaining in these initial images were removed using 

the QA60 band of Sentinel-2, resulting in a set of cloud-filtered images. Finally, the cloud-

filtered image dataset for each season was used to generate Sentinel-2 composite images 

by taking the median pixel value at each location (for each image band). As a result, a total 
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of 136 Sentinel-2 seasonal composite images were generated for the 34 cities, which were 

utilized for subsequent LCZ mapping.  

To keep the resolution of population counts consistent with the results of LCZ 

mapping of Chinese cities, the population data are resampled to 300 m, and then, the pixel 

values are divided by the area represented by each grid. The population density data of 

Chinese cities with a resolution of 300 m are obtained for subsequent population 

distribution analysis. 

2.3.2. LCZ Sample Dataset Construction 

To solve the lack of LCZ samples in China, we manually collected training area data 

for the 34 provincial capital cities. First, following the definitions of each LCZ type [11], 

we digitized and labeled LCZ sample polygons by visual analysis of high-resolution 

images from Google Earth. In the process of sample labeling, we followed a few general 

criteria (https://www.wudapt.org/digitize-training-areas, accessed on 1 May 2022). Then, 

the initial mapping results were obtained using the random forest classifier based on the 

initial LCZ sample dataset and the Sentinel-2 seasonal composite imagery. Then, the 

classification maps were checked by us on Google Earth to ensure that the classification 

results were consistent with the ground truth. If there is an error, the boundary of sample 

polygons was modified, or additional sample polygons were added to facilitate 

classification again. The process of sample modification and classification needs to be 

repeated until the classification maps can accord with the actual condition. Finally, we 

have built a high-quality training sample set of LCZ in 34 Chinese cities. The number of 

LCZ sample polygons collected from each city is shown in Figure 4. Due to the difference 

in urban development level and urban landscape, the number of LCZ types varies from 

city to city. 

 

Figure 4. The number of sample polygons for different LCZ types in 34 Chinese cities. 

2.3.3. LCZ Mapping Based on Chessboard Segmentation and Multi-Seasonal Images 
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To generate the LCZ maps of the 34 provincial capital cities of China, we proposed a 

patch-based LCZ classification framework (Scheme 1, S1) that uses chessboard 

segmentation and multi-seasonal images. Initially, to utilize the spatial and contextual 

information of neighboring pixels, the Sentinel-2 composite images were divided into 

patches of 30 × 30 pixels in size through chessboard segmentation. Several patch-level 

spectral and texture features were then calculated. Patch-level spectral features include 

the average spectral value of each image band, maximum difference in pixel values for 

each image band, and brightness (i.e., average spectral values of all bands combined) for 

a total of 18 features. The texture features calculated included: homogeneity, contrast, 

dissimilarity, entropy, angular second moment, mean, standard deviation, and correlation 

calculated from the gray level co-occurrence matrix (GLCM), with eight features in total, 

as described in [55]. 

Next, the LCZ sample polygons obtained by manual sampling were used to label the 

segmentation patches, and the labeling criterion was set according to an overlap rate 

greater than 50%. To be consistent with the sampling rate of the latest WUDAPT method, 

70% of the labeled patches were used as training samples, and 30% were used as 

validation samples. Here, a stratified random sampling strategy was used to obtain 

training samples and validation samples. The random forest classifier was chosen for LCZ 

mapping using these spectral/texture features because it is the state-of-the-art, non-

parametric and efficient classifier, which is widely used in local climate zone classification 

tasks [26,29,56,57]. In keeping with the latest WUDAPT method, the classification process 

is repeated 25 times. We have also calculated several specialized accuracy metrics for LCZ 

mapping proposed in recent years, namely: overall accuracy (OA), the overall accuracy of 

urban LCZ types (OAu), the overall accuracy of built-up LCZ types (OAbu), and weighted 

accuracy (OAw). The specific definitions of these indexes can be found in [41,58]. 

2.3.4. Latest WUDAPT Processing Method 

To generate globally consistent LCZ maps more conveniently and quickly, Demuzere 

et al. [39] proposed a web application, LCZ Generator (Scheme 2, S2), which is based on 

the default WUDAPT classification workflow. LCZ Generator uses samples uploaded by 

researchers to carry out LCZ mapping and finally shares the corresponding LCZ 

classification maps on the website. Specifically, in addition to Landsat-8, other Earth 

observations are used, in combination with the LCZ samples, as input to the random forest 

classifier. A total of 33 features were used, including 16 features from Landsat-8, 5 features 

from Sentinel-1, 8 features from Sentinel-2, and 4 additional features, all of which have 

been resampled to a resolution of 100 m, as seen in detail [39].To ensure the quality of the 

LCZ map, an automated cross-validation approach using 25 bootstraps is applied [41]. 

Then, 70% of the sample polygons in each bootstrap are used to train and 30% to test. The 

LCZ Generator outputs several LCZ map accuracy metrics, including OA, OAu, OAbu, and 

OAw. 

2.3.5. Population Distribution Analysis Based on LCZ Classification Results 

Although the LCZ types are primarily a description of land cover, some of them can 

be linked to land use and population. The built LCZs have obvious features in building 

height, openness, and usage. Generally speaking, the higher and more compact the 

building is, the higher the population per unit area will be (assuming the buildings are 

mainly used for housing). As a result, the population density will theoretically vary 

between LCZs. To study the population distribution in LCZs in China, an overlay analysis 

of the LCZ results and population data was performed. In addition, the 32 cities (except 

for Macao and Lasa) in China are divided into four sizes, namely super city, megacity, 

type Ⅰ large city, and type Ⅱ large city according to the number of permanent residents. 

Then, the impact of city size on the population distribution in LCZ is analyzed. 

  



ISPRS Int. J. Geo-Inf. 2022, 11, 420 9 of 20 
 

 

3. Results 

3.1. LCZ Mapping Results and Accuracy Evaluation 

3.1.1. LCZ Mapping Results Analysis among Cities 

Using the last modified training area samples, we produced LCZ maps for all 34 

Chinese cities, as shown in Figure S1. To show the situation of LCZ classification, a box 

plot of the overall accuracy of each city is shown in Figure 5. The overall accuracy of LCZ 

mapping results in the 32 cities, except for Lasa and Macao, ranged from 75% to 94%, with 

a mean value of 85%. The overall accuracy of most cities fluctuated within 10%, and there 

are no apparent outliers, indicating that the mapping results were relatively stable. At the 

same time, we noticed that Lasa and Macao have a low average overall accuracy of 54% 

and 65%, respectively. This was due to the small research area in these two cities, resulting 

in the smallest sample size. Previous studies have found that RF achieves less accurate 

results when a small number of training samples is used [59,60]. In summary, the average 

overall accuracy for all cities exceeded 50%, and most cities far exceeded this value. 

According to Bechtel et al. [41], the quality of the LCZ data we generated was acceptable 

for subsequent applied analysis. 

 

Figure 5. The box plot of overall accuracy in all selected cities. (Note: X-axis shows the 34 Chinese 

cities; Y-axis shows the overall accuracy ranging from 0–1; a legend is given at the lower-left corner.) 

3.1.2. Accuracy Variation among LCZ Types 

To analyze the differences in mapping accuracy between LCZ types, a producer’s 

accuracy heatmap (as shown in Figure 6) was produced for each city for each LCZ type. 

From the perspective of urban and rural LCZ types, it was observed that the average 

accuracy of the built LCZs ranged from 68% to 86%, which was generally lower than the 

average accuracy of the natural LCZs from 84% to 99%. Specifically, it can be seen that no 

matter where the city is located and how developed the city is, the accuracy of LCZ A 

(dense trees) and LCZ G (water) is consistently high, with a mean accuracy of 96% and 

99%. However, the accuracy of LCZ 1–6 is low, with a mean accuracy of 80%, 68%, 79%, 

77%, 68%, and 79%, respectively. In addition, due to differences in urban morphology, the 

surface of some cities did not have certain LCZ categories, mainly including LCZ 7 

(lightweight low-rise), LCZ 9 (sparsely built), LCZ 10 (heavy industry), and LCZ C (Bush). 

Therefore, there is no accuracy score for an LCZ type when it does not exist. 
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Figure 6. The accuracy of each LCZ type for the 34 cities and the average accuracy is given at the 

top line for all cities. Dashed lines indicate no accuracy score. 

3.1.3. Accuracy Comparison between Our Method and WUDAPT 

The LCZ training area samples with label information from 34 Chinese cities were 

uploaded to the WUDAPT website. Then, the mapping accuracy and results of LCZ for 

the corresponding cities were obtained after processing on the website platform. The 

mapping results are shown in Figure S1, and the relevant data can be found and 

downloaded at https://lcz-generator.rub.de/, accessed on 1 May 2022. To compare the LCZ 

classification accuracy of the two schemes, the four accuracy indicators of 34 cities under 

the two classification schemes were calculated and counted, as shown in Figure 7. Then, 

the four indicators of 34 cities were averaged to obtain Table 1. 

 

Figure 7. Comparison of four indicators (OA, OAu, OAbu, and OAw) under two schemes (our 

method, S1; WUDAPT method, S2) for the 34 cities. 
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0.78 0.80 0.73 0.94 0.80 0.71 0.97 0.88 -- 0.82 1.00 0.90 0.91 0.91 0.83 -- 1.00

0.83 0.60 0.79 0.80 0.46 0.78 0.64 0.87 0.71 0.83 1.00 0.59 -- 0.99 0.83 1.00 1.00

0.63 0.57 0.91 0.76 0.57 0.57 0.73 0.78 0.84 -- 0.96 0.82 1.00 0.91 1.00 1.00 1.00

0.96 0.82 0.73 0.89 0.69 -- 0.75 0.73 -- 1.00 1.00 0.68 1.00 0.98 0.82 1.00 1.00

0.74 0.89 0.76 0.81 0.64 0.85 -- 0.77 -- 1.00 1.00 -- 0.80 0.92 0.82 1.00 1.00

0.81 0.60 0.95 0.69 0.64 1.00 0.89 0.76 0.92 0.93 0.97 0.77 -- 0.88 0.98 1.00 0.99

0.97 0.66 0.56 0.79 0.50 0.89 -- 0.86 1.00 -- 1.00 0.85 -- 0.97 0.86 1.00 1.00

0.48 0.68 0.73 0.87 0.59 0.76 -- 0.61 0.61 0.89 0.99 0.57 -- 0.87 1.00 1.00 1.00

0.95 0.91 0.76 0.89 0.67 0.71 -- 0.72 -- 0.74 0.94 1.00 -- 0.89 0.64 0.86 1.00

1.00 0.62 0.54 0.83 0.64 0.80 -- 0.81 0.49 -- 0.98 0.88 -- 0.86 0.42 0.92 0.99

0.91 0.85 0.81 0.84 0.84 0.76 0.77 0.82 1.00 -- 0.98 0.74 -- 0.99 0.78 1.00 0.93

-- 0.27 0.76 0.70 0.78 0.87 0.88 0.96 0.97 0.95 1.00 0.86 0.98 0.98 1.00 1.00 1.00

0.76 0.97 0.86 0.90 0.63 0.95 0.79 0.97 1.00 0.47 0.82 0.68 1.00 0.87 -- 1.00 1.00

0.98 0.73 0.92 0.78 0.75 0.62 0.86 0.87 0.67 0.76 0.77 0.82 0.81 0.99 0.96 0.91 1.00

0.66 0.60 -- 0.56 0.51 0.64 -- 0.85 -- 0.92 0.98 0.74 -- 0.92 0.94 1.00 1.00

0.97 0.66 1.00 0.86 0.84 0.76 -- 0.92 -- 1.00 0.85 0.80 -- 0.91 0.95 -- 1.00

0.57 0.71 0.50 0.91 0.89 1.00 0.92 0.82 1.00 0.56 0.96 0.82 -- 0.74 0.97 0.99 0.98

-- 0.62 1.00 0.88 0.82 0.80 -- 0.81 0.78 -- 0.98 1.00 -- 0.93 1.00 1.00 1.00

0.86 0.12 0.47 1.00 0.68 0.67 -- 0.96 1.00 -- 1.00 0.69 0.76 0.97 -- 0.85 1.00

1.00 0.75 -- 0.67 0.35 0.90 -- 0.86 1.00 -- 0.92 0.90 -- 0.73 0.39 0.86 1.00

0.94 0.36 0.97 0.74 0.87 0.92 -- 0.94 1.00 -- 1.00 0.83 -- 0.89 0.43 0.86 1.00

1.00 0.49 0.99 0.68 0.61 0.92 -- 0.91 0.47 -- 0.91 0.83 1.00 0.82 0.93 1.00 0.99

0.37 0.92 -- 0.14 0.34 1.00 -- 1.00 0.71 -- 1.00 1.00 -- 0.94 1.00 -- 0.98
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0.90 1.00 0.73 0.60 -- -- 0.81 0.83 0.36 0.61 0.99 0.93 -- 1.00 0.65 0.89 1.00

0.41 0.68 -- -- 1.00 -- -- 1.00 -- -- 1.00 0.67 -- -- 0.59 1.00 1.00

0.80 0.68 0.79 0.77 0.68 0.79 0.82 0.85 0.84 0.86 0.96 0.84 0.92 0.91 0.84 0.97 0.99
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Table 1. The average accuracy of four indicators under the two schemes. 

Scheme OA (%) OAu (%) OAbu (%) OAw (%) 

S1 85.45 75.99 97.66 96.33 

S2 74.94 66.94 97.06 93.88 

First, it can be seen from Figure 7 that the OA, OAu, OAbu, and OAw of 34 cities 

obtained by S1 are higher than those obtained by S2 in varying degrees. Second, it can be 

seen from Table 1 that the OA, OAu, OAbu, and OAw obtained by S1 are 85.45%, 75.99%, 

97.66%, and 96.33%, respectively. The OA, OAu, OAbu, and OAw obtained by S2 are 74.94%, 

66.94%, 97.06%, and 93.88%, respectively. The four indicators of S1 are 10.51%, 9.05%, 

0.6%, and 2.45% higher than those of S2, indicating that the classification accuracy of S1 is 

better than that of S2 on the whole. The OAu of the two schemes is 8% and 9.46% less than 

that of OA, indicating that the classification accuracy of built types remains improved. 

Finally, more than 300 cities have uploaded LCZ samples to the WUDAPT website, and 

the average overall accuracy of LCZ mapping in all cities is 65.61%. By uploading LCZ 

samples from 34 Chinese cities to the WUDAPT website, the average overall accuracy of 

34 cities is 74.94%, which meets the requirement of WUDAPT automatic quality control 

with an average minimum accuracy of 50% [41], indicating that the quality of LCZ 

samples constructed by us is high. 

To more specifically compare the LCZ mapping results under different schemes, 

Fuzhou city is taken as an example to illustrate, as shown in Figure 8. First, on the whole, 

the LCZ classification result of S1 (our method) is more consistent with the remote sensing 

images in Google Earth than that of S2 (WUDAPT). In addition, it can be seen from regions 

1 and 2 that there are many LCZ A misclassified into LCZ 9 under S2, and the classification 

results under S1 can more accurately describe the surface coverage. This is because the 

spectral information of some natural surface cover changes with seasons, and multi-

seasonal images can introduce the phenological characteristics of vegetation to improve 

the accuracy of classification. Second, from the local point of view, it can be seen from 

region 3 and region 4 that the classification results of S2 can distinguish some smaller 

objects, such as LCZ A and LCZ G, but the classification results are more fragmented, and 

the classification effect is not as good as that of S1. Although S2 can describe the internal 

differences in urban morphology and surface characteristics in more detail, the noise is 

also larger and cannot represent homogeneous urban areas. In summary, the classification 

framework S1 was more robust, attained higher classification accuracy, and was easier to 

interpret (due to reducing the “salt-and-pepper” effect). 
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Figure 8. Comparison of LCZ mapping results under two schemes (S1 and S2): A case study of 

Fuzhou. The enlarged results of each scheme for the four subset areas (Box 1, 2, 3, and 4) are 

presented. Google Earth images of each region are also presented. 

3.2. Relationship between LCZ TYPES and population 

To obtain an overview of the 34 cities in China, the proportions of area and 

population for different built LCZ classes were counted, as shown in Figure 9. Among 

these classes, the large low-rise (LCZ 8) has the largest share of area, being 23.17% of the 

total built-up area and 14.43% of the total population. The sparsely built (LCZ 9) occupied 

12.51% of the total built-up area, only accommodating 2.54% of the total population in 34 

cities, and the lightweight low-rise (LCZ 7) held 6.11% of the total built-up area, 

accommodating 2.09% of the total population. Furthermore, 51.37% of the population 

lived in the open areas (LCZ 4–6), accounting for 41.62% of the total built-up area. 

However, the 13.26% compact area (LCZ 1–3) accommodated 26.74% of the total 

population. The difference in population density between compact high-rise (LCZ 1) and 

sparsely built (LCZ 9) was more than eighteen times. 
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Figure 9. The proportions of area (left) and population (right) of the ten built-up classes (LCZ 1–10) 

for the 34 cities. A legend for the 3D colored pie chart is given at the bottom. 

To further analyze the relationship between built-up LCZ types and population 

density, the heat map and histogram of population density (Figure 10a,b) at the LCZ scale 

were obtained by overlaying the LCZ results with population data. It can be seen from 

Figure 10a that LCZs 1–3 had the highest population density of 1372–83200 people/km2. 

LCZs 4–6 corresponded to a moderate level of population density, 384–21682 people/km2. 

LCZs 7–9 had the lowest population density of 0–5650 people/km2. Furthermore, there 

exists a decreasing trend of population density in LCZs 1–3 and LCZs 4–6, respectively. 

From Figure 10b, we found that the overall variation trend of population density in the 

built-up LCZ type was: LCZ 1 > LCZ 2 > LCZ 4 > LCZ 5 > LCZ 3 > LCZ 8 > LCZ 6 > LCZ 7 

> LCZ 9. Among them, LCZ 1 had the highest population density of 19,222 people/km2, 

while LCZ 9 corresponded to the lowest population density of 1030 people/km2. 

 

Figure 10. (a) Heat map of population density at the LCZ scale for 34 cities. (b) Histogram of average 

population density for each LCZ. 

3.3. Population Density of LCZs in Different Size Cities 

To further reveal the population distribution pattern of LCZs, the average population 

density of LCZs under different size cities was plotted. As shown in Figure 11, the 

hierarchical effect of population density in cities of different sizes was significant. In 
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relatively larger cities, the population density of all LCZs was high. The highest average 

population density was 7909 people/km2 in super cities (1495 people/km2 higher than that 

in megacities), 6414 people/km2 in megacities (399 people/km2 higher than that in type I 

large cities), and 6015 people/km2 in type I large cities (864 people/km2 higher than that in 

Type II large cities at 5151 people/km2). The difference in average population density 

between LCZs in megacities and type I large cities was the smallest, whereas that between 

LCZs in type II large cities and super cities was the largest. Consequently, there was a 

hierarchical effect of population density in LCZs of cities of different sizes in China in the 

following order: super cities > megacities > type I large cities > type II large cities. In 

addition, in the LCZ categories that had a relatively high population density, such as LCZ 

1, LCZ 2, LCZ 3, LCZ 4, and LCZ 5, the difference in population density was relatively 

higher in different size cities, while in the LCZ categories that were with relatively low 

population density, such as LCZ 6, LCZ 7, and LCZ 9, the difference in population density 

was relatively lower in cities of different sizes. 

 

Figure 11. The radar chart of population density of LCZ types for different size cities. (Note: the red 

box represents supercity, the orange circle represents megacity, the green diamond represents type 

I large city, and the blue triangle represents type II large city.) 

4. Discussion 

4.1. Comparison with Traditional LCZ Classification Method 

In the previous sections, we compared the proposed LCZ classification framework 

with the traditional method (S2) in terms of classification accuracy and visualization 

aspect. In this section, we further compare the two methods and present the limitations. 

The built LCZ types often correspond to complex urban scenes containing many 

artificial structures with high spectral heterogeneity, and therefore, their classification 

accuracy is usually not high [41,42]. The results obtained by the S2 only through the pixel 

features of remote sensing images are not satisfactory, as the spatial information and 

phenological features are not fully utilized. However, our proposed method generates 

objects through chessboard segmentation and can make full use of spatial relationships 

and contextual information by calculating the texture features (GLCM) of the objects 

[36,61]. In addition, the stacked multi-seasonal images are used to exploit the phenological 

features carried by the surface objects. These steps are easily implemented by the software 

of eCognition [62]. In this way, the complex scenes consisting of multiple land-cover types 
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can be more effectively represented by adding neighborhood information and 

phenological characteristics. 

The resolution adopted by the WUDAPT method is 100 m; however, this value may 

not be suitable for LCZ mapping. Considering the applicability of LCZ to climate research, 

Stewart and Oke [11] suggested that the minimum radius of each LCZ should be 200 to 

500 m. By analyzing the correlation between LCZ and climatic parameters, Zheng et al. 

[28] found that the optimal resolution for LCZ classification in urban areas of Hong Kong 

is around 300 m. Research showed that neighborhood information had a positive 

influence on LCZ mapping [63], and the larger image size (320–640 m) was more suitable 

for LCZ mapping [44]. In addition, many scholars have adopted a resolution of around 

300 m for LCZ mapping [36,64–66]. 

There still exist limitations to LCZ mapping based on remote sensing images. The 

accuracy of the built LCZ types is generally lower than that of the natural LCZ categories, 

as can be seen from Figure 6. The accuracy of LCZ A and LCZ G is generally high, which 

is due to the large distribution area and the difficulty to appear mixed ground objects. 

However, the accuracy of the classification of LCZs 1–6 is lower. This is due to the 

similarity of building materials in the same area and the lack of information on the 3D 

structure of buildings in the LCZ classification, making it difficult to distinguish between 

LCZs 1–3 or LCZs 4–6 only with a single data source of remote sensing imagery. Relevant 

urban data available at small scales, combined with the use of multiple sources (e.g., 

building morphology data, LiDAR data), will further improve the classification accuracy 

[24,42,67]. However, accurate and consistent data of height information at large scale 

scales (national or global) are still scarce. Even with these limitations, the accuracy of our 

proposed framework is still sufficient for subsequent population analysis. 

4.2. Application of LCZs in Combination with Population 

The built LCZ types inherently had distinct characteristics in building scale, height, 

density, and usage; thus, they will have different features in terms of population density. 

We analyzed the relationship between LCZs and population in 34 Chinese cities, and the 

results showed that the compact LCZs have a higher population density than open LCZs, 

with a maximum difference of 18 times (Figure 9). The huge differences in population 

density in LCZ reflected, to some extent, the inequalities in the living conditions of the 

Chinese people. Moreover, the compactness and height of the different LCZ classes were 

different, and thus, their population density was also different (Figure 10). Specifically, 

when comparing the population density of LCZs 1–3, we found that the higher the 

building is, the higher the population density of the corresponding LCZ type is. When 

comparing the population density in LCZs 1–3 and LCZs 4–6, we found that the more 

compact the building is, the higher the population density of the corresponding LCZ type 

is. The buildings are high and compact in LCZ 9, which has the highest population 

density. However, the buildings are low and sparse in LCZ 9, which has the lowest 

population density. In general, population density in built LCZs varies by type and is 

mainly affected by building height and density.  

By analyzing the effect of different city sizes on population density in the LCZ, our 

results show that there was a hierarchical effect of population density in LCZs of cities of 

different sizes in China, in the following order: super cities > megacities > type I large cities 

> type II large cities (Figure 11). This is because the greater the scale of the city, the more 

people have; thus, the utilization efficiency of the land is higher. Furthermore, we found 

that the difference in population density between cities of different sizes is greater when 

in the LCZ class with higher population density. Since the height and density of the 

buildings in LCZ 6, 7, and 9 are low, the upper limit of the population density in these 

categories is not high; thus, the population density between different sizes of cities is 

small. Conversely, in the high-rise LCZ type (LCZ 1 and LCZ 4), the upper limit of 

building height is high, and larger cities tend to have more and taller buildings, which 

makes the difference in population density the largest. 
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4.3. Possible Application Based on LCZ 

LCZs were originally developed for metadata communication in temperature obser-

vation of a field site; thus, the urban heat island study is its main application [68]. Due to 

their detailed description of urban areas, a few studies have also applied the LCZ scheme 

to the studies of urban energy budgets [15], urban ventilation [17], and outdoor thermal 

comfort [20]. In recent years, the future land use simulation (FLUS) model was proposed 

by Liu et al. [69] and was successfully applied to the future spatial change simulation in 

the LCZ [70]. The urban morphological structure provided by LCZs is closely related to 

the transportation network, which is an important factor influencing the urban land use 

pattern, and its planning guides the direction of urban development [71]. By considering 

different transport planning policies, such as the sustainable urban mobility plan [72], we 

could simulate the spatial change pattern of the LCZ using the FLUS model for ex-ante 

assessment of the impact of transportation planning policies. Furthermore, by combining 

population data, the LCZ forecast results will provide credible data support for the ad-

justments of planning policy. 

5. Conclusions and Future Work 

This study first constructed a high-quality training sample set with label information. 

Then, we proposed an LCZ classification framework based on chessboard segmentation 

and multi-seasonal Sentinel-2 images at a 300 m grid and used this framework to generate 

LCZ maps in 34 provincial capital cities of China. Subsequently, we evaluated the accu-

racy of the LCZ mapping results. In addition, we conducted an overlay analysis of the 

LCZ classification results and population density. The key findings of this study are sum-

marized as follows: 

(1) The values of overall accuracy in the 34 cities of China ranged from 75% to 94%, 

with an average of 85%. Compared with the latest WUDAPT method, the OA, OAu, OAbu, 

and OAw values of our proposed framework increased by an average of 10%, 9%, 1%, and 

2%, respectively. Meanwhile, the LCZ reference training sample set has been uploaded to 

the WUDAPT, which is available at https://lcz-generator.rub.de/submissions, accessed on 

1 May 2022. Please cite the paper to use the dataset. 

(2) The accuracy of different LCZ types varies. In general, the accuracy of natural 

LCZ types was higher than that of built LCZ types. The accuracy of the built LCZ type 

will be further improved by combining remote sensing images with multi-source data 

(e.g., building morphology data, LiDAR data, etc.) when relevant data are available. 

(3) Population density in built LCZs varies by type and is mainly affected by building 

height and density. The overall variation trend of population density in the built-up LCZ 

type was: LCZ 1 > LCZ 2 > LCZ 4 > LCZ 5 > LCZ 3 > LCZ 8 > LCZ 6 > LCZ 7 > LCZ 9. 

Among them, the mean population density of LCZ 1 (compact high-rise) was highest 

(19,222 people/km2), whereas that of LCZ 9 (sparsely built) was lowest (1030 people/km2). 

(4) There was a hierarchical effect of population density in LCZs of cities of different 

sizes in China in the following sequence: super cities > megacities > type I large cities > 

type II large cities. In addition, the difference in population density was higher in the LCZ 

types (LCZ 1, LCZ 2, LCZ 3, LCZ 4, and LCZ 5) that had relatively high population den-

sity, while the difference in population density was lower in the LCZ types (LCZ 6, LCZ 

7, and LCZ 9) that had relatively low population density. 

In conclusion, the high-quality LCZ training samples not only contribute to the pro-

duction of LCZ maps at national or even global scales but also make sample transferability 

possible. Meanwhile, the proposed classification framework provided a valuable refer-

ence for improving the accuracy of LCZ mapping. Moreover, this study gave the popula-

tion density in different built LCZs of Chinese cities and explored the influence of city size 

on it, which helps to understand population distribution patterns in China. 

In the future, the Earth Engine (e.g., Google Earth Engine) with huge computing 

power will be used to map the whole of China into LCZ types with these high-quality 



ISPRS Int. J. Geo-Inf. 2022, 11, 420 17 of 20 
 

 

training sample. Furthermore, we intend to integrate multi-source data to improve the 

classification accuracy of LCZ, especially for built LCZ types. When the entire LCZ map 

of China is available, we could estimate the population of China by population density in 

LCZs of cities of different sizes in a low-cost way. 

Supplementary materials: Comparison of LCZ classification results for 34 cities between 

the proposed method (Scheme 1) and the latest WUDAPT method (Scheme 2).Supple-

mentary materials to this article can be found online at www.mdpi.com/arti-

cle/10.3390/ijgi11080420/s1. 
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