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A B S T R A C T   

Generative Adversarial Networks (GANs) are one of the most creative advances in Deep Learning (DL) in recent 
years. The Remote Sensing (RS) community has adopted GANs quickly, and reported successful use in a wide 
variety of applications. Given a sharp increase in research on GANs in the field of RS, there is a need for an in- 
depth review of the major technological/methodological advances and new applications. In this regard, we 
conducted a comprehensive review and meta-analysis of GAN-related RS papers, with the goals of familiarizing 
the RS community with the potential of GANs and helping researchers further explore RS applications of GANs by 
untangling challenges common in this field. Our review is based on 231 journal papers that were retrieved and 
selected through the Web of Science (WoS) database. We reviewed the theories, applications, and challenges of 
GANs, and highlighted the gaps to explore in future studies. Through the meta-analysis conducted in this study, 
we observed that image classification (especially urban mapping) has been the most popular application of 
GANs, potentially due to the wide availability of benchmark datasets. One the other hand, we found that rela
tively few studies have explored the potential of GANs for analyzing medium spatial-resolution multi-spectral 
images (e.g., Landsat or Sentinel-2), even though such images are often freely available and useful for a wide 
range of applications (e.g., urban expansion analysis, vegetation mapping, etc.). In spite of the applications of 
GANs for different RS processing tasks, there are still several gaps/questions in this field such as: 1) which GAN 
models/configurations are more suitable for different applications?) 2) to what degree can GANs replace real RS 
data in different applications? Such gaps/questions can be appropriately addressed by, for example, conducting 
experimental studies on evaluating different GAN models for various RS applications to provide better insights 
into how/which GAN models can be best deployed. The meta-analysis results presented in this study could be 
helpful for RS researchers to know the opportunities of using GANs and understand how GANs contribute to the 
current challenges in different RS applications.   

1. Introduction 

One of the most important advances in machine learning (ML) in 
recent years is the resurrection of artificial neural networks (ANN) in the 
form of deep learning (DL). DL has led to the strengthening of ANNs by 
increasing the number of hidden layers (depth), mitigating outstanding 
problems (such as exploding/vanishing gradients), improving spatial 
characterization with convolution operations, and drastically reducing 
network training time (LeCun et al., 2015). These advancements have 
led to a new era in a wide variety of modeling tasks, including computer 
vision and remote sensing (RS) image analysis. DL models, especially 

deep convolutional neural networks (DCNNs), have been widely used in 
various RS applications, largely mapping applications where traditional 
ML models (mainly working with hand-crafted features) sometimes 
struggle to produce accurate and generalizable results (Jozdani et al., 
2019). In recent years, there have been different advances in the field of 
DL, ranging from new architectures and training approaches to new 
forms of data processing (such as Vision Transformers (Dosovitskiy 
et al., 2020), DL-based semi-supervised learning (Chen et al., 2020), and 
few/zero-shot learning (Wang et al., 2019). Among these advances, 
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are 
undoubtedly one of the most innovative. Although there were previous 
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approaches based on the generative model concepts (most notably, 
Variational Autoencoders (VAE)), GANs boast some unique properties 
that help generate data with unprecedented fidelity or improve network 
performance for different downstream tasks. 

GANs are a class of DL models capable of generating fake data, 
including image/raster data (Goodfellow et al., 2014). As any other 
generative model, GANs are trained with some real data, which is used 
to learn important features that can then help synthesize data that looks 
like real data. The way GANs work can be considered analogous to 
counterfeiters and detectives; that is, counterfeiters aim to generate 
some fake product/information that is indistinguishable from real 
product/information. More technically, GANs employ two models (e.g., 
neural networks): a generator (responsible for generating fake data), and 
a discriminator (responsible for distinguishing fake data from real data) 
(Goodfellow et al., 2014; Isola et al., 2016). These two models are 
simultaneously trained in an adversarial manner. Intuitively, the goal of 
the generator is to generate fake data such that it is very similar to real 
data, causing the discriminator to fail to distinguish it from a real data. 
Because of the relatively unique characteristic of GANs in producing 
synthetic data (usually imagery in RS studies), they have been used for a 
wide variety of RS applications including image-to-image translation (e. 
g., converting SAR images to optical images) (Fuentes Reyes et al., 2019; 
Chen et al., 2021), image classification (i.e., semantic segmentation, 
object-detection, scene classification) (Han et al., 2020; Xiong et al., 
2020; Zhu et al., 2020), and super-resolution (to synthetically upscale 
imagery to a higher resolution) (Jiang et al., 2019; Salgueiro Romero 
et al., 2020). 

Although there have been several review papers on DL in the context 
of RS in recent years, to our knowledge, those studies have been on the 
broad topic of DL rather than explicitly focusing on GANs (Zhang et al., 
2016; Yuan et al., 2020; Ma et al., 2019; Kattenborn et al., 2021). A 
comprehensive review study on GANs exclusively in the context of RS, 
however, would help the RS community to understand the potential and 
limitations of GANs in this field. This is important as GANs have shown 
to be powerful models in different computer vision tasks (Creswell et al., 
2018; Gui et al., 2020; Shamsolmoali et al., 2021; Alqahtani et al., 
2021), which are also common in RS. Thus, a review on this topic could 
also help RS researchers to identify RS data sources/applications/envi
ronmental contexts in which GANs should be explored sufficiently as 
well as other gaps and trends in the applications of GANs in RS. Sys
tematic reviews are particularly helpful for elucidating this information, 
as they are backed by a transparent and replicable methodology (e.g., 
explicit literature search and appraisal approach) that allows for quan
titative meta-analysis (i.e., techniques that statistically combine the 
results of multiple primary studies) (Grant and Booth, 2009). There are 
several seminal systematic review and meta-analysis papers in the field 
of RS focusing on different applications including image segmentation 
(Johnson and Jozdani, 2018; Kotaridis and Lazaridou, 2021), DL (Ma 
et al., 2019; Heydari and Mountrakis, 2019), and conventional image 
classification (Khatami et al., 2016). The most relevant review paper on 
GANs that also briefly reviews some applications of GANs in RS is the 
recent publication by Dash, et al. (Dash et al., 2021). However, there is a 
lack of a comprehensive review and meta-analysis study on the appli
cations of GANs in RS, despite GANs wide use for RS analysis in recent 
years. 

These are important information that are missing in the context of 
RS. Given the growing importance of GANs in the RS community, and 
the lack of prior systematic reviews on this topic, in this study we carried 
out a systematic review on the use of GANs in the context of RS. In 
addition to providing details on the papers reviewed, we also performed 
a meta-analysis to capture the status of trends in the applications of 
GANs in RS that is missing in the literature. The main objectives of this 
review were to:  

(1) Identify the main applications of GANs in the field of RS,  

(2) Identify and categorize the various GAN-based algorithms/ 
methods that have been used for different RS applications,  

(3) Conduct a comprehensive meta-analysis to capture the trend of 
GANs applications in the RS community,  

(4) Highlight the main challenges and gaps in training and applying 
GANs to RS data. 

2. Review process 

To retrieve the papers for our systematic review, we conducted a 
title/keyword/abstract search in the Web of Science (WoS) database 
using the terms: “remote sensing” AND “generative adversarial 
network”. We downloaded the metadata for all journal papers identified 
through this search (assuming they were the most reliable type of doc
uments due to their typically more rigorous peer-review process). The 
search was performed on July 17, 2021, resulting in the retrieval of 289 
journal papers in total. Of these, 231 papers were deemed as relevant for 
our review, namely that papers that addressed RS image-related prob
lems (Fig. 1). Papers only involving the use of non-RS data (i.e., non- 
overhead images) and/or non-image data were excluded from our re
views. From the full texts of the remaining 231 relevant papers, we 
collected several types of information deemed useful for a systematic 
review, including: the RS application(s) for which GANs were applied, 
the type(s) and spatial resolution(s) of the RS data used, the type of study 
area, the details of the GANs used in the study (loss function and eval
uation metrics), the country of the corresponding author, and year of 
publication (Table 1). 

3. Theoretical background of generative adversarial networks 
(GANs) 

3.1. Vanilla GANs 

Vanilla GANs were introduced by Goodfellow et al. (2014) based on 
a multi-layer perceptron (MLP) network. As a class of deep generative 
models, GANs consist of two components: a discriminator (D), and a 
generator (G). These two components can be considered as any differ
entiable system, but neural networks are commonly used as the gener
ator and discriminator. The role of the generator is to approximate a 
distribution pg(x) (which is a probability density function with a random 
variable x (e.g., pixel values)) that resembles that of real data pdata(x). 
When such a distribution can be approximated, it is possible to draw 

Fig. 1. Process of paper selection in this study.  
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samples from it that would look like real ones. To mathematically define 
the objective of a GAN, let G(z; θg) be a neural network used as the 
generator where z is random noise taken from a prior distribution z ∼ pz, 
and θg are network parameters. The goal of the generator is to perform 
the mapping from a given noise vector to the real data (G: z→x). This is 
equivalent to training a network that takes as input a random noise 
vector to simulate, for example, RS images. The discriminator network 
D(x; θd), parameterized by θd, aims to distinguish fake data (generated 
by the generator) from the real data x ∼ pdata, whereas the generator 
tries to maximize the probability of detecting fake samples as real ones. 
After each iteration of training, if the quality of fake data is insufficient 
(meaning that the discriminator can easily detect it as fake data), the 
generator receives some negative feedback/signal helping it improve the 
generating process. This process is repeated until the generator’s fake 
images cannot be easily differentiated from the real ones by the 
discriminator. In essence, these two networks compete in an adversarial 
way through a two-player minimax game as presented in Equation (1). 

min
G

max
D

V(G,D) =min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[1 − logD(G(z)))].

(1) 

The discriminator of the vanilla GANs uses a binary cross-entropy 
classifier (D(x) ∈ [0, 1]). In the first paper on GANs, it was shown that 
the best discriminator for a fixed generator is the one converging to 
Equation (2). 

D*
G(x) =

pdata(x)
pdata(x) + pg(x)

. (2) 

Plugging the unique optimal discriminator D*
G(x) (Equation (2)) into 

the objective function of GANs (Equation (1)) results in the Jensen- 
Shannon (JS) divergence between pg(x) and pdata(x) (Equation (3)). 
Since the goal of the generator is to approximate a distribution that 
matches the real distribution, the optimal generator minimizing the JSD 
(pdata(x)||pg(x)) is pg(x) = pdata(x), leading to the optimal discriminator 
outputting a probability of 1

2 , implying that the discriminator will be 
uncertain if the sample is fake or real. 

max
D

V(D,G) = Ex∼pdata(x)
[
logD*

G(x)
]
+Ex∼pg(x)

[
1 − logD*

G(G(x)))
]
=

Ex∼pdata

⎡

⎢
⎣log

pdata(x)
1
2
(
pdata(x)+ pg(x)

)

⎤

⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
KLdivergence

+Ex∼pg

⎡

⎢
⎣log

pg(x)
1
2
(
pdata(x)+ pg(x)

)

⎤

⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
KLdivergence

− 2 log2

= 2JS
(
pdata‖pg

)
− 2 log2.

(3)  

3.2. GAN variants (conditional, semi-supervised, auxiliary classifier) 

Vanilla GANs generate data based on random noise vectors without 
relying on any other information. One of the most important downsides 
of vanilla GANs is that we do not have control over the generator, and 
the samples generated accordingly. To address this problem, conditional 
GANs (cGANs) were introduced (Mirza and Osindero, 2014). Condi
tioning the generator as well as the discriminator using some additional 
information (such as class labels) can help improve/manipulate the fake 
data generated. In this regard, we can define the objective function of 
cGANs very much like that of vanilla GANs by including additional in
formation y ∼ py in both the discriminator and generator as presented in 
Equation (4). 

min
G

max
D

V(G,D) = min
G

max
D

Ex∼pdata(x)[log D(x|y)] + Ez∼pz(z)[1

− log D(G(z|y)))]. (4) 

This aids the generator in developing fake images for a specific class. 
Rather than class labels, one can also condition a GAN using images. For 
example, in super-resolution tasks, a coarse-resolution image is input to 
the generator to produce the corresponding high-resolution image, and 
the discriminator determines if this is an enhanced (fake) image or a 
native high-resolution (real) image. Other applications in which GANs 
can be conditioned using images include image interpolation (i.e., 
inpainting), domain adaptation, and image-to-image translation. For 
these image translation types of applications, the generator is the main 
interest, and the discriminator network is used to improve the training of 
the generator. However, the opposite can be true for some classification 
tasks, where the discriminator network is of primary interest and the 
generator is used to improve the training of the discriminator network. 

Different cGAN approaches have been proposed in recent years. 
Some of those approaches need paired data. One of the most well-known 
cGAN approaches is Pix2Pix (Isola et al., 2016) (and its improved 
version Pix2Pix HD (Wang et al., 2017). The authors of Pix2Pix showed 
that without devising new loss functions or architectures, it would be 
possible to perform several tasks (such as map/image-to-image/map 
translation, image inpainting, image colorization). However, to 
improve training GANs for different applications, it is a common prac
tice to include other loss functions to the objective function. A list of the 
most common loss functions used in GANs approaches is provided in 
Table 2. Although Pix2Pix was a breakthrough in image translation 
tasks, it was only applicable to paired data. In many tasks, collecting 
paired data is very difficult, if not impossible. To expand the applica
tions of cGANs beyond paired data, Zhu et al. (2017) proposed Cycle
GAN, which is able to operate on unpaired data. In this regard, 
CycleGAN performs two mappings G : X→Y and F : Y→X and uses two 
corresponding discriminators DX and DY. Along with the adversarial loss, 
the authors proposed a new loss function called cycle-consistency loss to 
make these two mappings possible (Equation (5)). 

G*,F* =min
G,F

max
DX ,DY

L GAN (G,DY ,X,Y) + L GAN(F,DX ,Y,X) + λL cycle(G,F),

L cycle(G,F) = Ex∼pdata(x)
[
‖F(G(x)) − x‖1

]
+Ey∼pdata(y)

[
‖G(F(y)) − x‖1

]
.

(5) 

Another commonly used type of cGANs is the semi-supervised GAN 

Table 1 
Attributes recorded from the papers reviewed.  

Attributes Categories 

Study application  • Image classification:  
o Semantic segmentation  
o Object detection  
o Scene classification  

• Image reconstruction/restoration  
o Super-resolution  
o Image denoising  
o Image inpainting (interpolation)  

• Data translation:  
o Image-to-image translation  
o Text-to-image translation  

• Domain Adaptation  
• Miscellaneous  

o Image generation  
o Image retrieval  
o Image compression  
o Image matching  
o Image fusion 

RS data used Visible (RGB), multi-spectral, hyperspectral, SAR, 
LiDAR 

Spatial resolution – 
Study area Urban, forest, agriculture, other (e.g., mountains, 

water, airport, etc.) 
Loss function Table 2 
Evaluation metrics Table 3 
Country of the corresponding 

author 
– 

Year of publication –  
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(Odena, 2016) which is an improved variant of vanilla GANs that aims to 
enhance supervised classification by involving unsupervised learning to 
learn from unlabeled data as well. As shown in Fig. 2, the discriminator 
of a semi-supervised GAN predicts N + 1 classes where “N” is the 

number of classes in the data, and “1” is for an additional class “fake”; 
that is, if the discriminator detects a generated data as real, it not only 
labels it as “real”, but also assigns it a class label. Auxiliary classifier 
GAN (AC-GAN) (Odena et al., 2016) is another class of popular cGANs. 

Table 2 
Most common loss functions found in GAN studies in RS.  

Loss Description Notes/references 

Adversarial This is imposed by the discriminator and most commonly is chosen to be (binary) cross- 
entropy loss or least-square loss in the context of RS. 

Vanilla GAN (Goodfellow et al., 2014) 
WGAN (Arjovsky et al., 2017) 
WGAN-GP (Gulrajani et al., 2017) 
LSGAN (Mao et al., 2016) 

Pixel-space This is a measure of structural similarity that is commonly calculated based on L1 or L2 
norm depending on the application at hand. 

L1 norm1 

L2 norm (or squared L2 norm also known as mean-squared loss)2 

Perceptual This is a measure of visual perception that is calculated based on a well-trained model, 
most commonly VGG-16 or VGG − 19. 

L1/2 norm based on pretrainedVGG-16/19 (Simonyan and Zisserman, 
2014) 

Classifier This loss is used to include semantic information as well as other information for 
training GANs. 

Cross-entropy (Good, 1952) 

Total variation This loss is popular in style-transfer tasks as it can help reduce noise in the generated 
images. However, it is also widely used for super-resolution tasks. 

(Rudin et al., 1992) 

Cycle- 
consistency 

This is a measure of self-similarity used during unpaired image-to-image translation 
tasks. 

(Zhu et al., 2017) 

Saliency This loss measures discrepancies of saliency maps of real and generated images. (Zhai and Shah, 2006) 
Edge This loss calculates discrepancies between the edges of real and generated images. Different edge detection approaches can be used to detect edges and 

then calculate this loss (Gonzalez and Woods, 2006).  

1 ∑n
i=1|G(x) − x|. 

2 ∑n
i=1(G(x) − x)2 or

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(G(x) − x)2
√

.  

Fig. 2. Some popular unconditional and conditional GAN frameworks.  
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Similar to cGANs, AC-GAN has a class-conditional generator. However, 
unlike cGANs, AC-GAN’s discriminator does not have access to the class 
labels. In fact, the way AC-GAN works is based on outputting two 
probabilities: 1) the probability of fake/real; and 2) the probability of 
classes. As with GANs, VAEs are generative models that can synthesize 
high-quality images. VAEs generally tend to generate blurry images 
because of the way the loss function of VAEs work; that is, although in 
many cases data have multi-modal distributions, the L2 loss function 
assumes a single Gaussian distribution for the data. However, Larsen 
et al. (2015) found that integrating a VAE and GAN (VAEGAN) can 
improve the quality of images generated. In this regard, the input is first 
encoded to a latent space (using the encoder of VAE). Then, the decoder 
(which is actually the generator) takes the encoded latent vector and 
generates fake images using it. Finally, just as with other types of GANs, 
a discriminator is used to distinguish the fake and real images. Bidi
rectional GAN (BiGAN) (Donahue et al., 2016) is another GAN model 
that includes latent-space features along with data-space features in the 
process of training. With this model, not only does the GAN map latent 
space to fake images, but it also inversely maps real data to latent space 
using an encoder. Due to the bi-directional design of BiGAN, in addition 
to distinguishing real from fake data (in the data space), the discrimi
nator jointly distinguishes the tuple (xReal, E(xReal)) from (G(z), z). The 
authors of BiGAN reported the high efficacy of this unsupervised feature 
learning approach for different supervised and semi-supervised down
stream tasks. 

Because of the high-dimensional parameter space and use of a non- 
convex objective function, finding an optimal solution (i.e., Nash equi
librium) when training GANs can be difficult (Salimans et al., 2016). 
Due to this, GANs can suffer from instability (such as a phenomenon 
known as “mode collapse” (Salimans et al., 2016) that may not be easily 
remedied. To overcome this issue, several approaches have been pro
posed to date. These approaches primarily focus on improving the 
objective function to enhance stability, and/or on the use of specialized 
architectures (e.g., DCNNs). Mao et al. (2016) proposed a least-squares 
GAN (LSGAN) that replaces the sigmoid cross-entropy with the least- 
squares loss function, so as to mitigate the vanishing-gradient problem 

during training. This was shown to result in generating higher-quality 
images in their experiments. Wasserstein GANs (WGANs) (Arjovsky 
et al., 2017) are another well-known approach for handling the 
vanishing-gradient problem in the training of GANs. To reduce training 
instability and mode collapse, WGAN uses an objective function which is 
based on an approximation of the Wasserstein distance (known also as 
Earth-mover) between pdata(x) and pg(x). Due to some limitations of 
training WGANs (like the K-Lipschitz constraint), WGAN-GP was pro
posed to account for such restrictions through including a gradient 
penalty term in the objective function of WGAN. 

3.3. Evaluation metrics 

Apart from the instability of GANs during training, it is difficult to 
measure the quality of generated images in an objective manner while 
training. This is mainly due to the fact that the loss values of GANs may 
not be indicative of the performance of the model during training. This 
problem in WGAN is less severe but even that alone could not be a 
reliable measure. To more objectively and efficiently measure the 
quality of generated images by GANs, several metrics have been pro
posed in the literature, which can be categorized into two main groups: 
1) metrics that are evaluated against ground-truth data (supervised 
metrics), and 2) metrics that do not require ground-truth data (unsu
pervised metrics). The metrics requiring ground-truth data also include 
task-specific metrics that indirectly evaluate generated data by consid
ering them in downstream tasks such as scene classification, object 
detection, or semantic segmentation. Such task-specific metrics include 
well-known metrics such as overall/average accuracy (OA/AA), F1- 
score (the hormonic mean of Precision and Recall metrics), intersec
tion of union (IoU/mIoU), and Kappa coefficient, etc. In Table 3, the 
most common metrics that have been used in the context of RS for 
evaluating GANs can be seen. 

4. Meta-analysis of GANs in remote sensing 

In this section, we present the results of a meta-analysis conducted 

Table 3 
Common evaluation metrics of GANs in RS studies.  

Metrics Supervised Examples 

RMSE/MSE/MAE ✓ (Zhang et al., 2018; Zheng et al., 2018; Leinonen et al., 2019; Ma et al., 2019; Zhang et al., 
2020; Chen et al., 2021; Feng et al., 2021; Song et al., 2021; Zhang et al., 2021) 

Structural similarity index (SSIM) ✓ (Salgueiro Romero et al., 2020; Zhang et al., 2018; Zheng et al., 2018; Leinonen et al., 2019; 
Ma et al., 2019; Zhang et al., 2020; Chen et al., 2021; Feng et al., 2021; Song et al., 2021; 
Zhang et al., 2021; Wang et al., 2018; Shi et al., 2019; Dou et al., 2020; Ma et al., 2020; Wang 
et al., 2020; Xiong et al., 2020; Fang et al., 2021; Zhang et al., 2021) 

Peak signal-to-noise ratio (PSNR) ✓ (Chen et al., 2021; Zhang et al., 2018; Feng et al., 2021; Wang et al., 2018; Huang and Jing, 
2020; Li et al., 2020; Yu et al., 2020; Yue et al., 2020; Zhang et al., 2020; Bashir and Wang, 
2021) 

Variance inflation factor (VIF) ✓ (Zhang et al., 2018; Zhao et al., 2021) 
Spectral angle mapper (SAM) ✓ (Zhang et al., 2020; Zhang et al., 2021; Zhang, 2019; Gao et al., 2020; Li et al., 2020; Zhou 

et al., 2020; Ozcelik et al., 2021; Xie et al., 2021; Zhou et al., 2021) 
Erreur relative globale adimensionnelle de synthèse (ERGAS) ✓ (Salgueiro Romero et al., 2020; Ma et al., 2019; Zhang et al., 2020; Zhang et al., 2021; Zhou 

et al., 2020; Zhou et al., 2021; Tang et al., 2020; Chen et al., 2021; Zhang et al., 2021) 
Correlation coefficient (CC) ✓ (Zhang et al., 2020; Ozcelik et al., 2021; Zhang et al., 2021; Bittner et al., 2018; Ghamisi and 

Yokoya, 2018; Hu et al., 2020; Kim et al., 2020; Paoletti et al., 2021) 
Fréchet inception distance (FID) ✓ (Zhu et al., 2020; Li et al., 2020; Adamiak et al., 2021; Ji et al., 2021; Shamsolmoali et al., 

2021) 
Inception score (IS) × (Zhu et al., 2020; Li et al., 2020; Wei et al., 2020; Chen et al., 2021) 
Perceptual image (PI) × (Feng et al., 2021; Lei et al., 2020; Gong et al., 2021) 
Learned perceptual image patch similarity (LPIPS) ✓ (Li et al., 2020; Lei et al., 2020; Gong et al., 2021) 
Mutual information (MI) ✓ (Zhang et al., 2018; Wei et al., 2020) 
Cosine similarity (CoS) ✓ (Ji et al., 2021; Wei et al., 2020; Xiong et al., 2020) 
Quality with no reference (QNR) × (Zhang, 2019; Zhou et al., 2020; Zhou et al., 2021; Zhang et al., 2021) 
Naturalness image quality evaluator (NIQE) × (Jiang et al., 2019; Wang et al., 2020; Burdziakowski, 2020; Ebel et al., 2021) 
Perception based Image Quality Evaluator (PIQE) × (Burdziakowski, 2020; Tao and Muller, 2019; Tao and Muller, 2021) 
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) × (Burdziakowski, 2020; Tao and Muller, 2019; Tao and Muller, 2021) 
R-squared ✓ (Zheng et al., 2018; Zhang et al., 2020; Xiong et al., 2021) 
Task specific metrics used for different scene classification, object 

detection, and semantic segmentation image classification tasks 
✓ (Hughes et al., 2018; Gao et al., 2019; He et al., 2019; Niu et al., 2019; Zhang et al., 2019; Yu 

et al., 2020; Liu et al., 2021; Peng et al., 2021; Saha et al., 2021; Zhang et al., 2021)  
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based on the 231 papers reviewed in this study. Unsurprisingly, the 
number of papers on GANs in the context of RS has increased rapidly 
(Fig. 3). Among the papers reviewed in this study, the first journal paper 
on GANs in RS was published in 2017 (He et al., 2017), which is almost 
3 years after GANs were first introduced. Although this 3-year delay was 
significant given the fast pace of advancements in the field of DL, we can 

clearly see that the RS community very quickly adopted GANs for 
different applications since then. In this regard, in 2018, 4 times more 
papers on GANs were published. Compared to 2018, almost 3 times 
more papers were published in 2019. In 2020, 91 relevant papers were 
published that is almost twice the number of papers published in 2019. 
Finally, until June 17, 2021, we found that 72 RS-relevant papers on 
GANs have been published. 

In the papers reviewed, we observed the applications of GANs over a 
wide variety of areas. As shown in Fig. 4, the majority of studies applied 
GANs in a mixture of different types of sites (n = 108), including, e.g. 
mixed urban, agricultural, forests, mountains, and water bodies. Of 
studies that considered a specific type of study site, the majority were 
studies on urban areas (n = 75), followed by studies on agricultural/ 
rural areas (n = 30) and forests (n = 10), respectively. These results 
indicate that areas with high levels of human influence are the typical 
study sites where GANs have been applied, while natural areas (forests, 
wetlands, and other ecosystems) have received less research attention. 

We also observed that the large majority (75%) of the papers pub
lished on GANs in the context of RS have been authored by researchers 
from China (Fig. 5). Authors from Germany, the United States, and a few 
other countries from Europe/Canada/Australia also had multiple papers 
published. This geographic imbalance in authorship may be a factor 
hindering further development of GANs for RS applications, which in
dicates that GANs are not being applied in many different geographic 
contexts. For example, there are almost no studies published by authors 
from tropical countries, so use of GANs for monitoring these areas is 
likely underdeveloped despite the importance of tropical ecosystems (e. 
g. tropical forests, mangroves, and coral/seagrass) and the ecosystem 
services they provide. 

The type of RS data used for a given application is an important 
consideration. As shown in Fig. 6, most of the papers on GANs have used 
visible RGB images (e.g., UAV images, Google Earth images, etc.) fol
lowed by multi-spectral (i.e., more than three spectral bands) and 
hyperspectral images, respectively. The reason that RGB images were 
used more frequently than the other RS image sources was likely two- 
fold: 1) There is a wide availability of different popular benchmark 
datasets composed of RGB images (such as RESISC45 (Cheng et al., 
2017), RSSCN7 (Zou et al., 2015), AID (Xia et al., 2017); 2) greater 
availability of (free) RGB images than multi-spectral images. The choice 
of datasets used in the papers reviewed also affected the model devel
oped/deployed. For example, the number of training data available in 
the benchmark datasets is generally more than non-benchmark datasets, 
so deeper networks can be applied more effectively in such cases. In 
addition, when using hyperspectral data, networks were designed to 

Fig. 3. Frequency of reviewed GAN papers published since 2017.  

Fig. 4. Frequency of study areas in the papers reviewed.  

Fig. 5. Frequency of the nationalities of the corresponding authors of the papers reviewed in this study.  
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simultaneously handle the high-dimensionality of data (if not using any 
prior dimensionality reduction) and take advantage of the additional 
spectral information (e.g., through the use of channel-wise attention 
mechanisms). There were also several studies that used multiple sources 
of RS data for analysis, as shown in Fig. 6. Of those studies, the com
bination of visible and multi-spectral data was used more than the other 
RS data combinations. In Fig. 7, it is clear that most of the data used were 
very high-resolution data (spatial resolution <= 1 m). High-resolution 
(1–10 m) data was the second most frequently used type, followed by 
moderate resolution data (10–30 m) and low-resolution data (>30 m), 
respectively. Only a small number of studies used moderate (n = 46) and 
low-resolution images (n = 16), while these types of images represent 
the majority of freely available RS datasets (e.g., Landsat and Sentinel 
data). Given this result, developing further applications of GANs for 
moderate/low resolution imagery could be an important area of future 

research. 
Among the different RS image processing tasks for which GANs were 

used, the most common was image classification, specifically semantic 
segmentation (Fig. 8). After that, data translation (especially image-to- 
image translation) and image reconstruction/restoration (especially 
super-resolution) were the second and third commonly used applica
tions of GANs, respectively. Such results are generally in line with the 
applications of RS where image classification is one of the most common 
applications. Data translation (specifically image-to-image translation) 
is also popular in the context of GANs in RS as it has several applications 
in different fields including domain adaptation (DA) that is used in 
different image classification tasks, or converting different sources of RS 
data to each other to improve the performance of models in various 
downstream tasks or to improve the interpretability of images (e.g., 
translating SAR images to optical images). 

Fig. 6. Frequency of RS data used in the papers reviewed.  

Fig. 7. Distribution of spatial resolutions of the images used in the papers reviewed. Note: Since many papers used multiple data sets, this figure is based on all the 
data sets used in each paper provided that their spatial resolutions were stated. 
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We also analyzed the loss functions used for training GANs applied in 
the papers reviewed. According to Fig. 9, the pixel-based loss has been 
the most common loss term used in conjunction with the adversarial 
loss. It was also observed that the combination of the pixel-space loss 
and perceptual loss was very popular in the GANs trained in the 
reviewed papers. As shown in Fig. 9, it is also obvious that binary/multi- 
class classifier loss functions (i.e., for image classification tasks) were 
also popular in the papers reviewed. 

In terms of the frequency of evaluation metrics, we observed that the 
overall accuracy (OA) metric (i.e., classification accuracy) has been used 
more than any other metric in the papers reviewed (Fig. 10). Specific 

image-quality evaluation metrics like SSIM and PSNR have been the 
second and third most commonly used metrics. The common use of 
classification-based evaluation metrics in GAN papers reviewed is not 
surprising as image classification was found to be the most popular 
application of GANs in the RS community (Fig. 8). In addition, it is 
generally easier to interpret the quality of results based on such metrics 
when the goal is image classification. 

5. Applications of GANs in remote sensing 

GANs have been widely used in various RS applications (Fig. 11). In 
this section, we review the applications of GANs in RS based on the 231 
journal papers considered in this study. To better organize the applica
tions, we also propose a taxonomy of different applications of GANs in 
the field of RS. It should be, however, noted that some applications have 
overlap with each other, but we attempted to categorize the papers (and 
the subsequent reviews) based on the central problem targeted to be 
solved. 

5.1. Image reconstruction/restoration 

5.1.1. Super-resolution 
Affording high-resolution multi-spectral RS imagery can be difficult 

and expensive. This problem is exacerbated if the aim is to conduct time- 
series analysis using high-resolution RS data. Super-resolution methods 
are one of the ways of synthetically improving the resolution of RS 
imagery. Advances in developing DL algorithms (especially DCNNs) 
have brought about unprecedented opportunities for developing more 
versatile super-resolution methods. Along with CNN-based super-reso
lution methods, GANs have proven to generate state-of-the-art super- 
resolution results. In recent years, GANs have also been used for 
different super-resolution tasks in RS (Zhang et al., 2020; Shi et al., 
2019; Huang and Jing, 2020; Bashir and Wang, 2021; Ge et al., 2021). 
Methods used for this application can be categorized into single-image 
super-resolution (SISRR) and multi-image/frame super-resolution 
(MISRR). In RS applications, most of super-resolution applications are 
based on SISRR. However, since temporal analysis in RS is a common 
application, there are also few studies employing MISRR. 

In a study conducted by Ma et al. (2019), dense residual WGAN-GP 

Fig. 8. Frequency of applications of GANs in RS.  

Fig. 9. Frequency of loss functions used in conjunction with adversarial loss in the papers reviewed.  
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Fig. 10. Frequency of the metrics commonly used to evaluate GANs in the papers reviewed.  

Fig. 11. Proposed taxonomy of GAN applications in RS.  
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(DRGAN) was proposed to perform super-resolution. In order to exert 
the potential of the residual blocks used in DRGAN, the authors used 
contiguous memory mechanisms in the network. Their experiments 
showed that DRGAN was superior to other approaches like SRGAN. In 
some studies, super-resolution has been performed to enhance images 
for a task-specific application, especially those in which targets are 
small, and thus discriminative features may not be extracted properly 
(Shi et al., 2019; Rabbi et al., 2020). In Shi et al. (2019), SRGAN was 
used to enhance low-resolution RADAR images for target recognition 
tasks. In Rabbi et al. (2020), an end-to-end edge-enhanced GAN-based 
super-resolution and object detection was proposed to detect vehicles 
in RS imagery. Yue et al. (2020) proposed a super-resolution method 
based on classifier-based GANs (called CSGAN). The authors hypothe
sized that considering the confidence scores of the classification when 
optimizing GANs for super-resolution can improve the results. Their 
experiments showed that the proposed GAN-based super-resolution 
framework resulted in higher quality results compared to SRGAN (Ledig 
et al., 2016) and enhanced SRGAN (ESRGAN) frameworks (Wang et al., 
2018). A potentially significant application of super-resolution in the 
context of RS is to improve the resolution of publicly available RS im
agery based on commercial high-resolution images. For example, in 
Salgueiro Romero et al. (2020), the authors used a modified version 
(removing upsampling layers) of ESRGAN (called RS-ESRGAN) to 
improve the resolution of Sentinel-2 imagery from 10 m to 2 m based on 
reference WorldView (WV) images as the high resolution reference. The 
proposed framework was first trained with synthetic low-resolution and 
high-resolution (LR-HR) WV images and then with real LR-HR pairs of 
Sentinel-2 and WV images. In a study by Zhang et al. (2021), the authors 
proposed a GAN-based super-resolution approach (called MS-SRGAN) to 
enhance the resolution of 16-m Gaofen wide-field-of-view imagery to 
4 m based on 4-m Gaofen-2 reference images. The generator of the 
proposed MS-SRGAN comprised a residual squeeze-excitation (RSE) 

block to improve feature extraction and super-resolved images accord
ingly. The authors reported that MS-SRGAN overall performed better 
than well-known super-resolution approaches including ESRGAN. Jiang 
et al. (2019) proposed a GAN-based super-resolution technique 
featuring an edge-enhancement network (called EEGAN) to generate 
sharper, more realistic super-resolution results. Along with using a sub- 
network that generates sharp images like other approaches, EEGAN used 
an edge-enhancement subnetwork to improve the quality of the first sub- 
network outputs, resulting in higher quality images than SRGAN and 
SRCNN. Variants of SRGAN were also applied to super-resolution of 
hyperspectral imagery. Dou et al. (2020) proposed a 3D attention- 
SRGAN network (3DASRGAN) to improve the resolution of hyper
spectral imagery. The motivation behind the proposed network was that 
many super-resolution methods mainly consider spatial information 
during the super-resolution process. Since hyperspectral images are 
spectrally rich, not properly making use of spectral information can 
degrade super-resolution. Given this, along with spatial and adversarial 
losses, 3DASRGAN used the spectral angle mapper (SAM) as a spectral 
loss in its objective function to improve the learning of high-fidelity 
spectral information during the super-resolution process. In a study 
conducted by Yu et al. (2020), the authors proposed a GAN-based super- 
resolution approach whose generator was based on deep back-projection 
network (DBPN (Haris et al., 2018), which was earlier proposed as a 
super-resolution network (but not in a GAN configuration). The authors 
enhanced DBPN (E-DBPN) by adding a residual channel attention 
module and replacing the concatenation operation with a proposed 
feature fusion module. One important factor in their approach was that 
they first trained the generator with an MSE loss (like the original 
DBPN), and then the pre-trained generator was re-trained based on an 
objective function containing content (based on L2 norm of VGG-19) 
and adversarial losses. In their experiments, E-DBPN achieved higher 
quantitative evaluation results than other methods (including RCAN 

Fig. 12. Super-resolution results presented in Yu et al. (2020): (a) HR, (b) bicubic resampling, (c) SRFeat (Park et al., 2018), (d) E-DBPN (Yu et al., 2020).  
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(Zhang et al., 2018) (Fig. 12). Considering the fact that detailed infor
mation and edges may be lost during super-resolution, Gao et al. (2021) 
used a residual channel attention module (aiming to improve loss of 
detailed information and blurred edges) in the generator of their WGAN 
to improve feature extraction while training for super-resolution. In fact, 
this approach was shown to provide more attention on high-frequency 
information (e.g., edges) responsible for enhancing the sharpness of 
the super-resolved images generated. 

Many of the GAN-based approaches used for super-resolution tasks in 
RS have been based on approaches proposed earlier for super-resolution 
reconstruction of natural images. Directly applying those models 
without adapting them to RS imagery might not result in desirable re
sults. As found by Lei et al. (2020), RS imagery may have more low- 
frequency components than natural images, possibly affecting the per
formance of the discriminator to correctly distinguish real images from 
generated ones when facing low-frequency parts of the image. To rem
edy this problem, the authors proposed a GAN-based super-resolution 
method called coupled GANs (CDGANs). Instead of considering one 
image at a time, the discriminator of CDGANs takes as input a pair of 
generated images and their corresponding ground-truth or reference. To 
further improve the quality of super-resolution, they also utilized some 
architectural modifications (e.g., the use of a dual-pathway network in 
the discriminator) as well as a specialized loss function (including 
coupled adversarial loss and pixel-space MSE loss). In a related study on 
considering the characteristics of RS images when designing super- 
resolution methods, Zhang et al. (2020) emphasized the importance of 
paying attention to the varying complexity of texture information in RS 
imagery when employing super-resolution. In this regard, the authors 
argued that applying a uniform super-resolution strategy for different 
land cover types may not be suitable for RS imagery. To account for this 
characteristic of RS imagery in super-resolution, the authors proposed a 
saliency-driven unequal super-resolution approach to adaptively 
consider the spatial characteristics of different regions. Their results 
showed the significance of their approach to considering the charac
teristics of different regions in RS imagery when utilizing super- 
resolution. In a relevant study, Ma et al. (2020) proposed a different 
saliency-driven GAN-based super-resolution making use of a pair of 

discriminators to better identify salient regions in the image, resulting in 
the reconstruction of sharper details with less textural artifacts. Gong 
et al. (2021) also echoed the importance of the need for designing RS- 
specific super-resolution methods rather than directly using the ones 
tested on natural images. In their study, the well-known ESRGAN model 
was modified to be applicable to mid-resolution RS imagery (in this case, 
Sentinel-2 imagery with a resolution of 10 m). In this regard, in their 
WGAN-based super-resolution approach, the authors designed a con
volutional block (called enlighten block) to improve the convergence of 
the network by providing an easier task (2-times up-sampling) as well as 
the target/harder task (4-times up-sampling), eventually resulting in 
better convergence and learning high-frequency details. Another 
important modification was the addition of a self-supervised hierarchi
cal perceptual loss along with the image-space L2 and adversarial losses. 

5.1.2. Image inpainting (interpolation) 
Image inpainting (also commonly known as image interpolation in 

the context of RS) can also be done using GANs. Traditional approaches 
(especially non-ML approaches) used for recovering missing regions 
(caused, for example, by sensor defects, clouds, etc.) in a given image 
may result in unfavorable results, especially if missing areas are large or 
located in high-frequency regions of the image. GANs can be very ad
vantageous for recovering missing regions in RS images. In a study 
conducted by Dong et al. (2019), the authors used a GAN-based 
inpainting approach to recover cloud-contaminated regions in sea- 
surface temperature (SST) products. Rather than relying solely on 
spatial information, that method also considered temporal information 
(i.e., historical SST data) in the process of image inpainting. Image 
inpainting also has applications in improving the density/resolution of 
rasterized sparse elevation data. In this regard, Zhu et al. (2020) used a 
GAN-based image inpainting approach to interpolate missing areas in 
digital elevation models (DEMs). Yan et al. (2021) also proposed a GAN- 
based interpolation approach to predict unobserved elevation data. 
Their proposed GAN was composed of a gated and symmetric-dilated U- 
net GAN (inspired by DeepFill v2 (Yu et al., 2018) to learn better fea
tures for the inpainting task. In Dong et al. (2020), the authors proposed 
a GAN framework to interpolate missing elevation information caused 

Fig. 13. GAN-based SRTM inpainting approach presented in Dong et al. (2020).  
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by shadow over mountainous areas in SRTM data. In this regard, to train 
the GAN, the authors used two additional loss terms (shadow loss and 
mountain-curvature loss) in the objective function to improve the 
inpainting of shadow-driven missing areas. More details on this 
approach can be seen in Fig. 13. 

5.1.3. Image denoising 
Noise is an integral part of RS data. However, the amount of noise 

varies depending on the sensor used for imaging. GANs have shown 
remarkable capabilities for reducing noise from RS imagery while pre
serving the overall sharpness and detailed contents of the image. Feng 
et al. (2021) proposed a unified GAN framework for simultaneous 
denoising and super-resolution reconstruction of RS imagery. Due to the 
limitations of the spatial domain for simultaneous image denoising and 
super-resolution reconstruction, the authors trained the GAN in the 
wavelet transform domain, helping them to process different frequency 
components separately. The effectiveness of using GAN for image 
denoising was also presented in Wang et al. (2018). The authors re
ported the efficacy of the GAN-based denoised images used for image 
matching and classification (trucks and cars) compared to the use of 
other denoising approaches like DCNNs (Mao et al., 2016). As shown in 
Fig. 14, images denoised by this approach maintained image details 
while keeping noise level at a very low level. 

5.2. Image classification 

Image classification is one of the most common applications of RS 
imagery. There are numerous ML-based approaches proposed for 
different image classification tasks. In this study, we categorize them as 
semantic segmentation, scene classification, and object detection. GANs 
have been widely used for various image classification tasks to improve 
the generalization power of DL models, especially in cases where 
labeled/annotated data are scarce. In the following three sub-sections, 
we review some of the applications of GANs for image classification of 
RS imagery. 

5.2.1. Semantic segmentation 
Semantic segmentation (or (dense) pixel-wise/level classification) is 

one of the most common applications of RS imagery. Due to their 
exceptional performance, CNNs are quite popular for semantic seg
mentation in the RS community. In many semantic segmentation tasks in 
RS, the main problem is the lack of diverse/representative ground-truth 
data (also called labeled data in the literature), because collecting 
ground-truth data is an expensive, cumbersome task. Due to this issue, 
ML models (in the context of this review paper, DL models) fail to 
generalize well to test data. To mitigate this issue, there are several 
approaches that can be used such as data augmentation techniques, 
regularizers (dropout, batch/group/instance normalization, and regu
larized weights), multi-task training, etc. GANs can be useful for 
improving semantic segmentation results in different ways ranging from 
data augmentation to domain adaptation. Building on a Bayesian 
framework (having a prior network and a likelihood network), He et al. 
(2019) proposed an end-to-end cGAN integrated with conditional 
random fields (CRF) for semantic segmentation of RS images. The 
integration of the skip-connected encoder-decoder generator with a CRF 
layer helped the extraction of better local and global information from 
the image, and thus improving segmentation results compared to 
DeepLab (Chen et al., 2018) (which is a powerful DL semantic seg
mentation architecture). In a similar study, Xiong et al. (2020) proposed 
a different end-to-end GAN-based Bayesian segmentation framework in 
which a prior network produced preliminary segmentations, and the 
likelihood network (i.e., GAN operating on the segmentation map for 
exploring spatial relationships among labels) refined the segmentation 
outputs of the prior network. He et al. (2019) integrated object-based 
image analysis (OBIA) with a semi-supervised GAN framework for the 
classification of wetlands. To improve the trade-off between accuracy 
and speed, the authors in that study incorporated ShuffleNet units (Ma 
et al., 2018) into their proposed semi-supervised GAN (called Shuf
fleGAN). The experiments in that study showed that ShuffleGAN was 
superior to the original semi-supervised GAN for the classification of 
wetlands. In Guo et al. (2021), the authors modified Pix2Pix by utilizing 
an FC-DenseNet as the generator to perform semantic segmentation on 
RS images. Their experiments showed the effectiveness of this modifi
cation over the vanilla Pix2Pix for semantic segmentation. Sui et al. 
(2021) used a cGAN framework conditioned on labels, intra-class edge 
features, and inter-class boundary features to augment data for semantic 

Fig. 14. Denoising results presented in Wang et al. (2018) based on: (a) noisy images, (b) denoised images by Chang et al. (2014), (c) denoised images by Xu et al. 
(2017), (d) denoised images by Mao et al. (2016), (e) denoised images by Wang et al. (2018). 
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segmentation tasks. It was shown that the proposed cGAN-based 
augmentation in that study resulted in more accurate segmentation 
maps compared to a plain cGAN conditioned only on labels. To address 
the vanishing-gradient problem, common in the training of DL models, 
Zhang and Hu (2017) proposed a conditional LSGAN approach for se
mantic segmentation of RS images. The authors reported the superiority 
of their approach compared to a cGAN and plain FCN framework. In 
order to improve the learning of high-level discriminative features from 
raw SAR images, Ren et al. (2020) proposed an enhanced AC-GAN 
framework (distribution and structure match AC-GAN (DSM-ACGAN)). 
Due to its dual-adversarial learning nature and due to considering the 
corresponding class-specific distribution and structure characteristics of 
real SAR images, DSM-ACGAN was able to improve the learning of 
discriminative, high-level features helping produce more accurate SAR 
classification maps compared to some other methods like plain AC-GAN 
(Odena et al., 2016) and ResNet18 models. 

Building extraction is one of the most common applications of se
mantic segmentation in RS. This is a challenging task as buildings can 
have intra-class variability and inter-class similarity to some other 
impervious features such roads. To address high intra-class variations of 
buildings, Sun et al. (2021) proposed the generation of a background 
map and building map separately through two inter-connected orthog
onal GANs (O-GAN (Su, 2019). In a study conducted by Shi et al. (2019), 
it was shown that building footprint maps generated using cWGAN(-GP) 
frameworks were more accurate than those generated based on cGAN, 
and the plain U-Net model. In a study conducted by Pan et al. (2019), a 
GAN-based building extraction approach with spatial and channel 
attention (SCA) mechanisms was proposed. An important advantage of 
adopting SCA mechanisms in the proposed GAN-based building extrac
tion framework was to selectively concentrate more on some specific 
important features (both spatially and spectrally), leading to more ac
curate building extraction results. In order to improve building footprint 
extraction using GANs over complex regions, Abdollahi et al. (2020) 
employed bi-directional convolutional LSTM (BConvLSTM) layers in the 
generator (SegNet (Badrinarayanan et al., 2017). The authors showed 
that their proposed GAN framework was superior to some other ap
proaches (such as the use of the same generator trained in a non- 
adversarial way). 

Road extraction is another important application in semantic seg
mentation of RS imagery. Several studies have adopted GANs to improve 
road extraction from RS images (Shamsolmoali et al., 2021; Zhang et al., 
2019a, 2019b; Shi et al., 2018; Li et al., 2019). Shi et al. (2018) designed 
an end-to-end cGAN-based segmentation framework (with a SegNet as 
the generator) to extract roads from RS imagery (a mapping task from 
image to road map), which was shown to be overall more accurate than 
applying a plain SegNet. In another study on road segmentation, 
Abdollahi et al. (2021) used a cGAN, with a modified U-Net generator 
inspired by Enokiya et al. (2018), to extract roads in high-resolution 
aerial imagery. In Li et al. (2019), the authors used a cGAN-based seg
mentation framework integrated with a multi-scale feature aggregation 
module to account for the uneven distribution of roads (depending on 
the UAV altitude) in UAV images. Their experiments showed the 
importance of using the multi-scale feature aggregation in their cGAN- 
based segmentation approach. Yang and Wang (2020) adopted an 
ensemble cWGAN-GP segmentation approach (based on Pix2Pix) by 
training two GANs and then intersecting their outputs to improve road 
segmentation accuracies. One of the challenges in road extraction is to 
preserve the coherency of the road networks. However, different types 
of occlusions (such as shadows) prevent this. To address this issue, 
Zhang et al. (2019) proposed a topology-aware road network extraction 
approach based on cGANs. Their proposed approach (called multi- 
supervised GAN (MsGAN)) was able to consider both spectral and to
pological features to improve road extraction. In another study on 
improving the topology of road networks extracted from RS imagery, 
Zhang et al. (2019) proposed a multi-conditional GAN framework with 
two discriminators, one of which was aimed for topology reconstruction 

of road networks, and the other one for topology refinement of road 
networks. Improving the efficiency of DL models is important as they 
may be overparameterized and inefficient for the application at hand 
and lead to an overfitting. By improving its efficiency, a lightweight 
version of Pix2Pix was proposed by Cira et al. (2021) to improve 
segmented roads from aerial imagery. In this regard, the proposed 
framework took as input Gaussian noise and an initial segmented road 
map (as the condition), and generated a refined road map based on the 
corresponding ground-truth. To improve multi-scale feature extraction 
(which is an important factor for road segmentation, as mentioned 
earlier), Shamsolmoali et al. (2021) proposed a GAN-based approach 
(called adversarial spatial pyramid network (ASPN)). The key advantage 
of their proposed approach was the use of an efficient spatial Laplacian 
pyramid network as the generator that helped extract pyramid features 
at multiple scales. 

GANs have also been widely used for semantic segmentation of 
hyperspectral data. Zhu et al. (2018) experimented with a 1D-CNN- 
based and a 3D-CNN-based AC-GAN approach to classify hyperspectral 
imagery. After training the AC-GANs on PCA-transformed data (for the 
sake of efficiency), the authors further fine-tuned the discriminators on 
the real and fake data. According to the experiments, the 3D-CNN-based 
approach resulted in better accuracies, as it considered both spectral and 
spatial information. Wang et al. (2021) also proposed an AC-GAN 
approach for classification of hyperspectral imagery using an adaptive 
Dropblock (Ghiasi et al., 2018) in both the generator and discriminator 
to mitigate the mode-collapse issue. The Dropblock adaptively gener
ated variable drop shapes rather than a fixed-size one. Semi-supervised 
learning (involving unlabeled data as well as labeled data in the training 
process) is one of the approaches to improving the performance of the 
model when sufficient labeled data are not available. This can be 
effectively accomplished with GANs. He et al. (2017) employed a semi- 
supervised GAN approach for classifying hyperspectral images. Rather 
than inputting hyperspectral images/pixels directly into the GAN, the 
authors used spatial-spectral features extracted with a 3D bilateral filter. 
In a relevant study, Zhan et al. (2018) proposed a semi-supervised 1D- 
GAN that improved the performance of the model when few training 
samples were available. Taking into account the lack of training data 
and noise in hyperspectral images, Gao et al. (2019) proposed a semi- 
supervised multi-discriminator GAN-based segmentation approach to 
mitigate some of the common issues of GANs (such as mode collapse) for 
classifying hyperspectral imagery. To classify hyperspectral images, 
Hang et al. (2021) proposed a multi-task GAN framework. The generator 
in the proposed framework aimed to perform the reconstruction and 
classification tasks simultaneously, resulting in more accurate hyper
spectral classifications than some other approaches (like WGAN, CNN). 
For this purpose, the generator was composed of an encoder-decoder 
and a classifier, in which the structure of the encoder was shared to 
improve the classification task as well as the reconstruction one. Ali
pour-Fard and Arefi (2020) proposed a structure-aware GAN framework 
for generating fake hyperspectral image patches to be used as a form of 
data augmentation for a subsequent classification. In their proposed 
unconditional GAN, the discriminator was tasked with distinguishing 
fake data from real data and with distinguishing structurally corrupted 
data from non-corrupted data. Applying these two tasks, compared to 
the conventional GANs, helped generate more realistic and diverse 
samples to be used in conjunction with real ones to improve the final 
classification. Feng et al. (2020) proposed a GAN-based hyperspectral 
classification approach based on collaborative learning and a spatial- 
spectral attention mechanism. To further improve the performance of 
the GAN approach for image segmentation, the authors also used a 
convolutional LSTM layer in the discriminator to be able to capture long- 
term spectral dependencies as well as contextual and spatial features. 
The experiments showed that the proposed approach overall led to more 
accurate results than some other approaches like 3D-GAN. One of the 
powerful variants of GANs is Variational Autoencoder GANs (VAE-GANs 
(Larsen et al., 2015), which have been reported to be more accurate than 
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VAEs and conventional GANs (Larsen et al., 2015). The structure of VAE- 
GANs is basically similar to conventional GANs except that a VAE is 
integrated with the generator, resulting in three components: encoder, 
decoder/generator, and discriminator. Tao et al. (2020) proposed an 
end-to-end hyperspectral-classification approach based on a semi- 
supervised VAEGAN (SSVGAN) with ensemble predictions, capable of 
taking advantage of both labeled and unlabeled data during model 
training. In order to generate realistic, meaningful samples for training 
the classifier in the SSVGAN approach, the authors also introduced a 
new collaborative optimization mechanism. Overall, the tests conducted 
in that study showed the effectiveness of SSVGAN for hyperspectral 
image classification. 

5.2.2. Object detection 
As with semantic segmentation and DL methods in general, one of 

the most challenging issues in object detection is the lack of sufficient 
training data, especially if the object of interest is already rare or is too 
small (Bashir and Wang, 2021; Courtrai et al., 2020). This, as a result, 
causes the object-detection model to fail to perform properly. Data 
augmentation techniques and transfer learning are the two approaches 
that may improve object detection with few training samples. GANs 
have also been reported to ameliorate object detection tasks as they can 
assist with data augmentation and can improve the robustness of the 
model accordingly. In a study by Zhu et al. (2020), a multi-branch cGAN 
(called MCGAN) was proposed to generate diverse samples for object 
detection tasks. To improve the diversity of the images generated, 
MCGAN used three branches for distinguishing fake from real data, and 
one classification branch for predicting the classes of input objects. The 
authors also used an adaptive sample-selection strategy to filter out 
generated samples that had distributions different from that of the real 
data. The sampled generated images were then used as augmented data 
for training a subsequent supervised CNN object-detection model (Faster 
R-CNN (Ren et al., 2015), and found to improve the accuracy of object 
detection compared to the use of traditional data augmentation tech
niques (i.e., rotation, filliping, and contrast transformation). In another 
study, Zheng et al. (2019) utilized a GAN framework for synthesizing 
vehicles in RS images for vehicle detection tasks. Their proposed 
framework had one generator and two discriminators that were tasked 
with simultaneously learning vehicle generation and background 
context. The experiments in that study showed that vehicle detection 
models trained on the combined real and synthesized vehicle samples 
(generated by the proposed framework) resulted in higher detection 
accuracies than the models trained only on real data. Zhang et al. (2018) 
used a cGAN framework to more accurately recognize aircraft types in 
RS images. Basically, the main goal of the proposed cGAN framework 
was to extract more discriminative, representative features to be fed into 
a subsequent aircraft classifier (in this case, an SVM). The proposed GAN 
took as input aircraft masks (generated using key points) and generated 
corresponding synthetic aircraft images. In order to learn multi-scale 
features (to account for the resolution and scale of aircrafts appearing 
in RS images), three discriminators were used for operating on three 
different image sizes. According to the experiments conducted in that 
study, it was shown that the proposed aircraft recognition framework 
was more accurate than CNN approaches like ResNet-18. GANs can also 
be used to improve the robustness of the object detector in cases where 
objects are small compared to the spatial resolution of the data. Such 
approaches are mainly based on super-resolution reconstruction. In fact, 
to improve the extraction of small objects in RS images, such studies 
have typically adopted super-resolution to enhance the resolution of 
images that can then facilitate the detection of objects of interest (Bashir 
and Wang, 2021; Rabbi et al., 2020; Courtrai et al., 2020). 

5.2.3. Scene classification 
As seen in Fig. 8, although scene classification (also known as image- 

level classification) in RS is less common than semantic segmentation 
and object detection, the advent of DL has provided an unprecedented 

opportunity to further explore RS scene classification in recent years. 
Unsurprisingly, GANs can also be used to improve scene classification by 
improving the robustness of the classifier (Teng et al., 2020; Xu et al., 
2018). As with any other classification task in RS, DL-based scene 
classification requires a large number of annotated data, which is diffi
cult to afford due to many data- and labor-related challenges. Taking 
this issue into account, Han et al. (2020) utilized an AC-WGAN frame
work to simulate annotated RS samples for scene classification tasks. 
The experiments in that study showed that not only the use of AC-WGAN 
improved classification accuracies in the presence of limited training 
data, but also it was superior to some other data augmentation ap
proaches (including CycleGAN). In Yan et al. (2020), the authors used a 
semi-supervised GAN framework to improve scene classification. In 
addition to the semi-supervised nature of the framework in that study, 
inspired by MARTA-GAN (Lin et al., 2017), another key factor in that 
method was the use of a feature matching loss component, calculated 
based on the multi-feature layer of the discriminator. The importance of 
the use of multi-feature layer for training GANs in scene classification 
was also demonstrated in Wei et al. (2020). In this respect, the authors 
made use of a multi-feature layer module to train WGAN-GP (called MF- 
WGAN). After training the GAN model, the discriminator (along with the 
multi-feature layer) was unplugged and used to train an MLP classifier. 
The authors reported that their MF-WGAN was superior to MARTA- 
GAN. Inspired by the symmetrical and incremental GAN training strat
egy (Karras et al., 2017; Pan et al., 2020) proposed a GAN framework 
capable of generating more diverse, controllable samples for scene 
classification purposes. In this regard, the proposed approach used a 
progressive technique to generate fake samples from coarse to fine res
olutions, which eventually helped learn more diverse structure features 
at different scales that led to generating more diverse samples accord
ingly. The experiments in that study showed that training a CNN by 
combining the real and fake images generated by the proposed approach 
resulted in higher classification accuracies than using only real images, 
and using real, augmented (rotation and filliping), and MARTA-GAN. As 
discussed earlier, the use of attention mechanisms can help narrow 
down the focus on more useful/relevant features and can help model 
long-range dependencies, and thus improve generating more realistic 
images. In a study by Guo et al. (2021), the authors proposed a scene 
classification framework based on gated self-attention GAN (SGSAGAN) 
with a novel similarity loss. One of the key features in their proposed 
GAN-based framework was the use of two networks as the discriminator, 
namely an online and a target into which two augmented views of im
ages were fed and the similarity loss was calculated based on the outputs 
of the two networks. As the authors reported, the experiments on two 
benchmark datasets showed that the SGSAGAN led to higher scene- 
classification accuracies than the other approaches including Attention 
GANs (Yu et al., 2020). 

5.3. Data translation 

One of the most popular applications of GANs in RS is data trans
lation including image-to-image translation and text-to-image trans
lation. In this section, we review some of data translation applications 
performed with GANs in the context of RS. 

5.3.1. Image-to-image translation 
Image-to-image translation has various applications ranging from 

image colorization to cross-sensor style transferring. Such applications 
have also been explored in several RS studies (Zheng et al., 2018; Song 
et al., 2021; Kim et al., 2020; Hayatbini et al., 2019). One of the most 
practical applications of image-to-image translation is to generate cloud- 
free images from cloud-contaminated ones. In a study conducted by Li 
et al. (2020), the authors proposed a semi-supervised cloud removal 
framework based on cGANs and a physical model of cloud distortion to 
recover thin-cloud-contaminated areas using unpaired RS images (in 
this case, 10-m bands of Sentinel-2 imagery). Their proposed cloud- 
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removal framework was composed of two components, namely 
“removal network” (cGAN; responsible for translating cloud- 
contaminated image to cloud-free image) and “extraction network” 
(responsible for decomposing a cloud-contaminated image into three 
cloud distortion layers). According to the evaluations performed in the 
study, it was shown that the unpaired GAN-based cloud-removal 
approach was overall comparable to paired approaches (like U-Net), 
which may not be efficient as collecting paired data may not be possible 
in some cases. In a recent study on simulating cloud-free Sentinel-2 
images using Sentinel-1 images, Xiong et al. (2021) proposed a multi- 
temporal paired GAN-based approach (called Multi-channels Condi
tional Generative Adversarial Network (MCcGAN)), which was designed 
based on the supervised CycleGAN (S-CycleGAN) approach proposed 
earlier (Wang et al., 2019). According to their experiments, it was re
ported that MCcGAN overall performed better than the other mono- and 
multi-temporal approaches including S-CycleGAN. In another study on 
the use of GANs for thin-cloud removal from RS imagery, Chen et al. 
(2021) utilized a cGAN with a spatial Attention mechanism in its 
generator to improve the restoration of thin-cloud-contaminated re
gions. The generator of the proposed approach had two sub-networks, 
namely an attention network (to better identify cloud-contaminated 
regions) and a contextual autoencoder (to generate cloud-free images). 
Their experiments on Google Earth images showed that their approach 
performed better than plain cGANs. Thin-cloud removal using GANs was 
also conducted in Wen et al. (2021). In that study, rather than the RGB 
color space, the authors used the YUV color space to reduce the number 
of unrestorable bright and dark pixels. In the training process, the au
thors first pretrained the GAN based on simulated image pairs (simu
lated cloud-contaminated and cloud-free), and then fine-tuned it on real 
image pairs, which, based on comparisons with other GAN and non- 
adversarial approaches, overall led to higher-quality simulated cloud- 
free images. 

Image-to-image translation can also be used for synthesizing eleva
tion data from single-view RS images. For example, in a study carried 
out by Ghamisi and Yokoya (2018), the authors used a GAN framework 
(called IMG2DSM) to simulate DSM data from high-resolution single- 
view RS images. As well as measuring the reconstruction quality, the 
authors reported that the use of synthesized data together with high- 
resolution optical data improved the overall accuracy of semantic seg
mentations by a large margin. In a recent study, Paoletti et al. (2021) 
introduced an improved version of IMG2DSM (U-IMG2DSM) for optical- 
to-DSM translation tasks. One of the improvements of U-IMG2DSM was 

that it was able to operate on unpaired data. In order to make the 
approach work with unpaired images, the authors integrated weight- 
sharing constraint of coGANs (Liu and Tuzel, 2016) with the latent- 
encoding of VAE-GANs (Larsen et al., 2015). The experiments in that 
study showed that although U-IMG2DSM performed slightly worse than 
IMG2DSM (but better than CycleGAN), it was overall more efficient than 
IMG2DSM which was not able to perform on unpaired data. 

SAR images are much less affected by atmospheric variations than 
optical images. However, they may be difficult to interpret compared to 
optical images. In this regard, a few studies aimed to translate SAR 
images to optical images and used them for different downstream tasks 
such as semantic segmentation tasks. Fuentes Reyes et al. (2019) eval
uated the potential of CycleGAN for unsupervised translation of SAR 
images (Sentinel-1 and TerraSAR-X) to optical images (Sentinel-2 and 
ALOS PRISM). To better evaluate the quality of the translation task, the 
authors trained a road extraction model (DeepLab V3+) on the real SAR 
images and synthesized optical images separately. They found that 
although the model trained on real SAR images achieved higher accu
racies than the one trained on synthesized optical data, the approach 
was overall able to preserve important features of roads during the 
translation. In a more recent study, Zhang et al. (2021) adopted Pix2Pix 
for a SAR-to-optical translation task (Sentinel-1 to Landsat-8 (bands 
1–7)) and reported that including more SAR-related information (such 
as different polarizations and edge information) for such a translation 
task improved the quality of the generated optical images. In another 
attempt to generate optical images from SAR images, Ji et al. (2021) 
proposed an unpaired GAN framework that accounted for the various 
types of terrains when performing the translation task. The authors 
argued that since different terrains in SAR images can have different 
color domains, not considering this may cause color confusion in the 
translated images. Their evaluations showed the superiority of the 
proposed approach for simulating visible RGB images (Sentinel-2 RGB 
bands) from SAR images (Sentinel-1 VV) compared to CycleGAN and 
Pix2Pix (Fig. 15). 

Another interesting application of image-to-image translation is to 
create styled maps (like Google Maps) from RS images. For example, 
Song et al. (2021) proposed an efficient image-to-map framework using 
cGANs (called MapGen-GAN). One of the primary factors when trans
lating images to styled maps is to meet geometrical consistency re
quirements. In order to account for semantic distortion and unpaired 
data for this translation task, MapGen-GAN used a geometrical- 
consistency loss as well as a cycle-consistency loss in the objective 

Fig. 15. SAR to optical image translation results presented in Ji et al. (2021): (a) SAR image, (b) real optical image, (c) generated optical image by CycleGAN, (d) 
generated optical image by Pix2Pix, (e) generated optical image by Ji et al. (2021). 
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function of the proposed GAN approach. The evaluations based on 
different metrics (such as SSIM and PSNR) showed the superiority of 
MapGen-GAN compared to other approaches like CycleGAN. 

5.3.2. Text-to-image translation 
In the previous section, we reviewed GAN-based image-to-image 

translation methods used in the field of RS. In addition to simulating RS 
images from other RS image (sources), it is also possible to simulate RS 
images based on text data. This unusual yet interesting task can also be 
performed with GANs. In a study conducted by Bejiga et al. (2019), the 
researchers investigated the potential of a GAN-based framework for 
synthesizing RS imagery based on geographically described ancient 
texts. In the proposed framework, the synthetization was done by 
feeding encoded text descriptions (along with a noise vector) into a 
cWGAN-GP responsible for simulating RS imagery based on the encoded 
texts. In a later study (Bejiga et al., 2021), the above-mentioned 
approach was improved to be able to generate more realistic images 
from ancient text descriptions. In the original approach, text encoding 
was performed by a simple binary approach that may not result in 
semantically meaningful synthetization of RS images corresponding to 
the text descriptions. To address this issue in their enhanced approach, 
the authors adopted a Doc2Vec text encoder in both the generator and 
discriminator, resulting in synthesized RS images more consistent with 
the text descriptions. 

5.4. Domain adaptation (DA) 

Domain adaptation (DA) is a sub-field of transfer learning, where the 
goal is to adapt an ML model to a target domain so it can hopefully 
perform as good as it does in the source domain. This way of improving 
the generalization power of ML models has been proven to be effective, 
especially in cases where collecting training samples in the target 
domain is time consuming. GANs have been reported to be advanta
geous for different DA tasks. In this section, we review the applications 
of GANs for DA in the context of RS. It should be noted that some of the 
applications in this section may have overlap with some of the previous 
applications (e.g., image classification), but we decided to separate them 
to better focus on the DA aspects of the approaches proposed. 

Regardless of segmentation models used, it is apparent that the 
performance of an ML model is degraded if the test data are from a 
different domain (Benjdira et al., 2019). GANs can be used to alleviate 
cross-domain shifts in RS data, and thus improving the performance of 
the segmentation model to generalize well on a target domain. Intui
tively, one workaround is to make target-domain images look like the 
source image(s) on which, for example, a segmentation model was 
trained, which is technically equivalent to correcting for the domain 
shift. There are several papers on GAN-based DA in the field of RS. Ji 
et al. (2021) proposed an unsupervised DA (UDA) approach based on an 
end-to-end unpaired GAN framework for LULC classification. One of the 
key features of their GAN framework was to apply three DA modules (i.e. 
image domain adaptation, feature domain adaptation, and output 
domain adaptation) to improve the quality of the style translation and 
segmentation accordingly. The proposed GAN framework was composed 
of two learning stages. In the first stage, the goal was to transfer style 
from the source domain images to the target domain images based on 
image domain adaptation and target domain adaptation modules. In the 
second stage, the target image, target-stylized source image, source 
image, and reconstructed source image (from the first stage) were used 
to train a segmentation network with an output space adaptation 
module (to align the output segmentation maps). Their evaluations on 
two datasets showed that their approach was superior to the commonly 
used AdaptSegNet (Tsai et al., 2018) and CycleGAN. Tasar et al. (2020) 
presented another unpaired GAN-based UDA framework (called Color
MapGAN) for LULC classification tasks. One of the key features of Col
orMapGAN was its high efficiency resulting from the fact that it did not 
use any convolution or pooling operation in the generator, but rather 

only an element-wise matrix multiplication and a matrix addition. The 
experiments in that study showed that ColorMapGAN overall resulted in 
more accurate LULC classification maps than the other approaches like 
CycleGAN. In another study on UDA for semantic segmentation, Liu and 
Su (2020) proposed a framework consisting of three trainable compo
nents: a feature extractor network, a cGAN, and an MLP classifier. 
Extracted curve features (from feature curves derived from a pretrained 
DeepLab V3+) along with a random noise vector were fed into the 
generator. In their proposed approach, the feature extractor network, 
GAN, and MLP classifier were trained simultaneously to optimize the 
framework, but during the test, only the feature extractor and classifier 
were used. According to the evaluations reported in that study, their 
proposed UDA approach achieved higher accuracies than other 
advanced approaches including CycleGAN and CyCADA (Hoffman et al., 
2017). Liu et al. (2021) proposed a GAN-based UDA approach for 
hyperspectral classification by emphasizing the importance of aligning 
class-conditional distributions rather than only marginal distributions of 
the source and target domains. For this purpose, the proposed frame
work deployed an adaptation network consisting of class-wise adver
sarial adaptation and probability maximum mean discrepancy (PMMD, 
which was calculated based on the predicted probability outputs of the 
target data), resulting in higher classification accuracies than other 
state-of-the-art approaches including MADA (Pei et al., 2018). Although 
adapting a given source-domain RS image to a target-domain RS image 
has been shown to improve the accuracy of the semantic segmentation of 
target-domain RS images, it is also interesting to investigate how good 
translated non-RS images can contribute to the accuracy improvement 
of semantic segmentation. Zou et al. (2020) considered such a special 
UDA problem where the authors translated a set of in-game rendered 
aerial images of the popular “GTA V” videogame to aerial RS images to 
study how well such translated images would generalize to building 
detection tasks in RS images. For this purpose, the authors utilized 
CycleGAN (trained in an end-to-end fashion with an FCN for the building 
detection task). Not only did the authors report this approach was su
perior to applying a plain, non-adapted building detection model, but 
also they reported that jointly training CycleGAN and the building 
detection model resulted in higher accuracies than training and using 
them separately. 

GAN-based DA methods have also been used for bi-temporal change 
detection tasks. For example, Fang et al. (2021) showed that the use of a 
GAN-based Siamese model improved accuracy mapping of landslide 
inventory. In the proposed approach, the GAN was responsible for per
forming DA between a pre- and pos-landslide images. In the landslide 
detection part of the proposed framework, the adapted/translated pre- 
landslide image along with the original post-landslide image were 
then fed into a Siamese network optimized based on the contrastive loss 
calculated between the feature maps extracted from the two image in
puts. In a more recent study, Kou et al. (2020) integrated a ConvLSTM 
network with a cGAN to spectrally align multi-temporal RS images to be 
used for change detection tasks, which can increase the likelihood of 
detecting real changes. Their proposed GAN-based DA approach con
sisted of two cascaded modules: 1) progressive translation (i.e., pro
gressively mitigating seasonal-driven domain discrepancies between bi- 
temporal images), and 2) group discrimination (i.e., evaluating if un
paired generated and post-event images are real/fake). 

GAN-based DA can also be carried out for RS scene classification 
tasks to improve the generalization of scene classifiers. In a study con
ducted by Teng et al. (2020), rather than using a single fake/real 
discriminator, the authors used two different scene land-cover classifiers 
in the discriminator. In fact, as the authors argued, the use of a dual- 
classifier setting for the discriminator would help prevent ambiguity 
in the vicinity of land cover decision boundaries, resulting in higher 
accuracies on target images. Liu and Su (2020) utilized a UDA approach 
by integrating an AC-GAN and a domain confusion network (trained in 
the target domain with the pseudo-labels generated by a source-trained 
classifier) to improve scene classification in the presence of domain 
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shifts. To strengthen the capability of the GAN-based UDA framework 
for decreasing feature discrepancies between domains, the authors also 
incorporated a feature extractor (jointly trained with the GAN) whose 
output features were fed into the AC-GAN, resulting in higher accuracies 
than CycleGAN. 

5.5. Miscellaneous applications 

Apart from the applications of GANs that were reviewed above, there 
are some other applications that may not be considered as a sub- 
category of the above applications or may overlap more than one of 
the above applications. 

One such application is image pansharpening, which can also be 
considered as a special type of image fusion and super-resolution. The 
main goal of performing pansharpening is to enhance the resolution of 
multi-spectral bands using the panchromatic band, resulting in a single 
image containing both rich spectral and spatial information (Zhang 
et al., 2018). GANs have been reported to be advantageous for pan
sharpning (Zhang, 2019; Zhou et al., 2020; Zhou et al., 2021; Zhang 
et al., 2021). For example, Xie et al. (2021) proposed a 3D GAN 
(HPGAN) for pansharpening hyperspectral imagery to take advantage of 
both high-spatial and high-spectral information in a single image cube. 
Unlike SRGAN and ESRGAN, HPGAN used a least-squares loss function 
in the discriminator. One of the key points in HPGAN was that its 
generator operated in the high-frequency domain rather than the image 
domain to improve the generalization power of the network. In Shao 
et al. (2020), a residual encoder-decoder cGAN (RED-cGAN) was pro
posed to perform pansharpening. In order to preserve both spatial and 
spectral details as much as possible, the generator used a two-branch 
sub-network (followed by a Residual encoder-decoder network) 
capable of extracting hierarchical features (Shao and Cai, 2018). The 
experiments on WorldView-2 and -3 images showed that RED-cGAN 
overall led to higher fidelity pansharpened images than other methods 
like PSGAN (Liu et al., 2018). 

Image retrieval is another miscellaneous application of GANs where 
the goal is to retrieve data of interest from a database based on image 
contents. The RS community has reported the potential of GANs for 
image retrieval in recent years (Xiong et al., 2020; Cao et al., 2020; 
Zhang et al., 2018; Zhang et al., 2019). In Cao et al. (2020), the authors 
proposed a deep metric learning method with GANs regularization 
(DML-GANR) for retrieval of high spatial resolution imagery (Fig. 16). In 
addition to the use of a multi-layer DML and a high-level feature 
extractor, the proposed retrieval framework used an unconditional GAN 
to reduce overfitting while training (in an end-to-end fashion), which 
was shown to improve retrieval accuracies in cases where training data 
are not sufficient. As discussed earlier, after training an unconditional 
GAN, the discriminator can be unplugged and used as a powerful 

unsupervised feature extractor for different downstream tasks including 
image retrieval. For example, in Zhang et al. (2018) and Zhang et al. 
(2019), the authors proposed GAN-based approaches to improve 
retrieving hyperspectral images. In their proposed approaches, an un
conditional DCGAN was used to extract more representative, discrimi
native spatial/spectral features helping improve the retrieval of queries. 

GANs have also been used for image matching in the field of RS 
(Merkle et al., 2018; Du et al., 2021; Ma et al., 2021). Image matching 
has many important applications in computer vision. The key factor in 
image matching is to identify common features in the image pairs to be 
matched. Due to different limitations (e.g., illumination variations, 
sensor view angle variations, temporal variations, etc.), identifying 
common features can be difficult. Most of GAN-based image matching 
approaches are based on image translation concepts that aim to make a 
pair of images similar to each other (e.g., in terms of lighting variations) 
and then perform image matching techniques to the translated image 
and the other image. For instance, Ma et al. (2021) trained a cGAN 
(regularized with a pixel-space L1 norm and gradient L1 norm) to first 
conduct image translation on the target image to reduce nonlinear 
variations. The tests in that study based on applying SIFT and SURF 
feature detectors/descriptors showed the significant efficacy of using 
GANs for improving RS image matching. In a study by Merkle et al. 
(2018), the authors considered matching visible images with SAR im
ages based on a cGAN, cLSGAN, and cWGAN. In this regard, the GANs 
were used to transfer visible images to SAR-like images, and feature 
detectors/descriptors were applied on the generated SAR images and 
real ones. The authors reported that the use of images generated by the 
cLSGAN led to more accurate image matching results than those 
generated by cGAN and cWGAN. 

One of the challenges of RS data (especially if they are multispectral/ 
hyperspectral) can be their size. Given this, it is favorable to reduce their 
size by utilizing, if possible, a lossless compression technique. GANs 
have been reported to be powerful approaches to compress RS images 
while preserving the quality and spectral/spatial information as much as 
possible. In one of the few studies in this field, Zhao et al. (2021) pro
posed a symmetrical lattice GAN (SLGAN) to compress RS images. Since 
the quality of compressed images can be degraded, the authors designed 
an enhanced Laplacian of Gaussian (ELoG) loss to improve edges, tex
tures, and counters of the compressed images. The evaluations of that 
study (on Gaofen-2 images with a spatial resolution of 1 m) showed that 
SLGAN was overall superior to other classic (e.g., JPEG 2000) and 
advanced approaches (e.g., ComGAN (Santurkar et al., 2017). 

6. Challenges and future directions 

As discussed in the previous sections, GANs can be advantageous for 
many types of RS applications. For example, in image classifications, 

Fig. 16. GAN-based image retrieval approach proposed and presented in Cao et al. (2020).  
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GANs are valuable for data augmentation and improving the robustness 
and generalization of classifiers. This is crucial in cases where sufficient 
labeled data are not available, which is a common problem in most, if 
not all, practical applications in the context of RS. For image recon
struction/restoration applications, GANs have shown to be more accu
rate than traditional approaches, especially for super-resolution tasks; 
GANs can generate detailed, realistically super-resolved images that 
may not be possible to replicate using non-GAN approaches. For data- 
translation tasks, particularly image-to-image translation, GANs have 
shown top performance. In fact, along with the sharpness of translated 
images, past research has shown that color-transferring accuracy in 
translated images derived from GANs is higher than plain CNNs. GANs 
have also proven to be beneficial for other RS applications including 
image matching, image fusion, and image retrieval for which traditional 
processing approaches often struggle to handle due to their high level of 
complexity. 

Although GANs have provided unprecedented opportunities for 
synthesizing RS images and for improving model performance in 
different applications, particularly image classification tasks, there are 
still several critical challenges that have not yet been addressed prop
erly. One of the main challenges is the difficulty in optimizing GANs. 
Although there have been new ways (e.g., new architectures, objective 
functions, training strategies, etc.) for mitigating this issue, it is not 
guaranteed by any means to achieve optimally converged GANs. 
Another important challenge is the way through which generated im
ages are evaluated. Supervised image-level element-wise metrics (e.g., 
based on L1 and L2 norms) are not generally reliable to judge the quality 
of generated images against the real ones. Feature-level metrics based on 
pretrained models (most notably, VGG-16 and -19) are generally more 
reliable because small shifts negligible to human eyes can result in 
different image-level losses although the contents of the generated and 
real images perceptually are very similar. However, such pre-trained 
models for evaluating generated images operate on RGB images, as 
they were trained on millions of natural RGB images. Therefore, 
applying such models to multi-spectral images is not possible by default. 
Task specific metrics are also useful to quantify the quality of generated 
images based on the application at hand. However, this indirect way of 
evaluation does not take into account the uncertainty in the classifica
tion accuracy. Given such challenges in evaluating generated images by 
GANs, one of the future directions in this field can be to conduct a 
comprehensive empirical study to analyze which metric(s) can objec
tively and reliably best evaluate GANs performance in different RS 
applications. 

As the meta-analysis results showed, GANs need to be tested in more 
diverse study areas. This is, however, understandable as collecting 
labeled data in RS is typically a significantly challenging task. Given this, 
a number of studies tested the potential of their approaches mainly on 
benchmark datasets. However, several popular benchmark datasets are 
composed of RGB images. Given the fact that many RS data have more 
than three bands, such benchmarks may not be sufficiently representa
tive of RS data commonly applied for different practical applications. 
We also observed that GANs have not been widely applied to commonly 
used publicly available data (such as Sentinel and Landsat images) 
compared to high-resolution data. Since the constellation and continu
ation of such images have been one of the most important advances in 
the field of RS, there needs to be more research on the potential of GANs 
on such publicly available medium-resolution images that are widely 
used in different academic fields. 

Moreover, the literature is scarce of comprehensive empirical studies 
on the performance of GANs compared to other advanced and classic 
approaches in various applications. In fact, an open question is that for 
which applications GANs make a significant improvement compared to 
other approaches. For example, in a comprehensive study by Li et al. 
(2020), the potential of a CycleGAN and AGGAN (Tang et al., 2019) DA 
approach for segmentation and object-detection tasks was analyzed. The 
authors found that although the two GAN approaches improved 

semantic segmentation compared to the direct prediction, they did not 
perform better than classic, simpler approaches. For object-detection, 
the authors reported that the GAN approaches performed the worst. 
Such a study is also worth conducting for other applications and with 
different RS datasets to better inform the RS community about how well 
GANs can perform against other approaches. Another relevant gap in 
this field is the lack of the evaluation of GANs performance against other 
well-known generative models like VAEs, which tend to generate less 
crisp images than GANs do. Given this, there is a need for a solid 
empirical study that shows if the use of GANs has any meaningful 
advantage over VAEs for different downstream RS tasks, such as image 
classification. 

One other direction in need of future research is the effectiveness and 
significance of different loss terms in training GANs. It is still unclear 
which loss functions and for what applications can tangibly improve the 
performance of GANs in the field of RS. In this regard, an empirical study 
on analyzing the effectiveness of various loss functions for training GANs 
in different applications can substantially help the community to more 
reliably configure objective functions for training GANs. 

7. Conclusions 

Generative adversarial networks (GANs) have been one of the most 
creative advances in the field of deep learning (DL) in recent years. 
Although there have been several review papers on DL related to RS in 
the last 4 years, to our knowledge, there have not been any journal re
view paper explicitly on the applications of GANs in remote sensin (RS). 
In this review, 231 journal papers published from 2017 to 2021 (July 
17th) were considered. We conducted a comprehensive study on GAN 
approaches, applications, challenges, and trends in the field of RS. 

Our meta-analysis results showed a significant increase in the num
ber of papers on GANs in the field of RS since 2017 (from 4 to 91 in 2020, 
and to 72 until July 17th, 2021). We observed that GANs have been 
applied to various RS applications and using a wide variety of datasets. 
Some of the most important results of the meta-analysis conducted in 
this study were as follows:  

• Study application: Image classification (38%), data translation (23%), 
image reconstruction (21%) have been the top three most common 
applications of GANs in the papers reviewed, respectively.  

• RS data source: Among the different RS data sources, RGB images 
were used more than multi-spectral, hyperspectral, SAR, and LiDAR, 
respectively.  

• Spatial resolution of images: Sub-meter resolution images were the 
most common types of images used in the papers reviewed in this 
study, while popular medium-resolution image sources (such as 
Landsat) were not used as widely.  

• Study area: A large number of papers considered a mixture of 
different types of sites (47%). Of these different types of study sites, 
the majority of papers considered urban areas (32%) as their study 
areas, possibly due to the high popularity of urban mapping using RS 
data in recent years.  

• Loss function: Among different loss functions, the pixel-space (based 
on L1 or L2 norm) and perceptual loss functions (based on VGG-16/ 
19) have been the most common loss functions, respectively, used 
along with the adversarial loss. 

• Evaluation metrics: Image-classification accuracy measures (specif
ically OA) were the most commonly used type of evaluation metrics 
used. This is rather unsurprising as we found that most papers 
focused on image classification. Among direct evaluation metrics, 
SSIM and PSNR were used most frequently (to compare the images 
generated by GANs with corresponding reference images). 

The meta-analysis also indicated that many papers reviewed in this 
study properly evaluated the performance of GANs either using direct 
evaluation metrics (i.e., metrics that evaluate the quality of the images 
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generated by a GAN) or indirect evaluation metrics (i.e., metrics that 
evaluate the quality/accuracy of GAN-generated images used for 
different downstream tasks such as image classification). Although there 
have been seminal papers on GANs in the context of RS, there are still 
several challenges that should be further studied and addressed to 
improve the performance and applicability of GANs in various RS ap
plications. As elaborated, these challenges are not limited to the diffi
culty in training GANs, but also the way we evaluate their results. For 
future studies, we suggest conducting some comprehensive empirical 
studies on best practices for training GANs, such as the choice of 
objective functions, evaluation metrics, and network architectures. Such 
studies would be very worthwhile to develop more versatile GANs for 
different RS applications. It is also crucial to apply GANs to more diverse 
areas, especially those areas where non-adversarial approaches gener
ally struggle to produce satisfactory results. 
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