#### Article

# Relative Vulnerability of Indian Coastal Districts to Sea-Level Rise and Climate Extremes

# K.S. Kavi Kumar<sup>\*a</sup> and S. Tholkappian<sup>b</sup>

This study estimates the relative vulnerability of coastal districts of India using an integrated vulnerability index, which is defined as a function of the exposure, sensitivity, and adaptive capacity of the districts to present and future climate risks. The study also ranks districts in terms of the likely number of human casualties due to potential surge associated with cyclonic storms. The results indicate that the districts on the east coast are relatively more vulnerable than those on the west coast. Relative rankings of the coastal districts based on predicted storm-induced casualties are similar to the rankings based on the integrated vulnerability index, indicating the robustness of the findings. The primary purpose of the relative vulnerability measures developed in this study is to provide insights on prioritizing adaptation for specifically vulnerable regions. The study discusses policy issues with reference to the "adapt to what" and "how to adapt" aspects of adaptation and argues in favor of avoiding maladaptation to present-day extreme climate events and harmonizing climate-change adaptation with integrated coastal-zone management practices.

Keywords: Climate change, Coastal zones, Vulnerability, Adaptation

# 1. Introduction

Climate change and associated sea-level rise (SLR) are believed to be inevitable, and the Intergovernmental Panel on Climate Change (IPCC) observes in its third assessment report (2001, p.10) that "there is new and stronger evidence that most of the warming observed over the last 50 years is attributable to human activities." While changing climate poses challenges to humanity as a whole, the available evidence suggests that the developing countries are particularly vulnerable. Most of the available impact estimates, however, do not account for impacts due to extreme climate events such as cyclones and droughts, whose frequency and intensity could also increase under changed climatic conditions. These natural disasters currently cause significant damage in developing countries. Asia, for example, accounted for almost 38 percent of hydrological and meteorological disasters that occurred during the period 1991 and 2000 around the world. Of those reported killed by natural disasters, 83 percent lived in Asia, while 67 percent lived in nations with low Human Development Indexes (IFRC 2001). Thus, from the developing country perspective, present-day vulnerability due to natural disasters, the possibility of increase in frequency and intensity of such events with climate change, and the

Corresponding author, Madras School of Economics, Gandhi Mandapam Road, Chennai – 600 025, India. Tel. +91 44-22300304, Fax +91 44-22352155; Email: kavi@mse.ac.in

a. Associate Professor, Madras School of Economics, India.

b. Academic Associate, Indian School of Business, Hyderabad, India.

potential high impact of climate change on the performance of climate-sensitive sectors make a strong case for focus on adaptation options as part of climate-change policy. A fundamental input necessary for formulating adaptation policy is knowledge about impacts induced by climate change on, and the vulnerability of, climate-sensitive sectors.

The threat of rising sea levels as a result of climate change makes coastal resources, coastal infrastructure, and population living in coastal areas highly vulnerable. At the same time, as the rise in sea levels is likely to be a gradual process, numerous adaptation options, such as building dikes and floodwalls, wetland restoration, afforestation, and relocation of threatened buildings, also exist. Moreover, climate change could manifest itself through extreme events such as cyclones, and hence a proper understanding of current management practices for coastal zones, such as early-warning systems and hazard insurance, could provide useful insights about potential adaptation strategies.

India, with more than 7,500 km of coastline covering the Gujarat, Konkan, and Malabar coasts in the west and Tamil Nadu, Andhra Pradesh, Orissa, and West Bengal coasts in the east, is the specific focus of this study. There are a total of 53 coastal districts and six union territories, and a large proportion of the total population lives in these areas. The objective of this study is to assess the relative vulnerability of coastal districts of India to present-day and future climate threats. The paper is organized as follows: the rest of this section briefly reviews the related literature; section 2 describes the methodology adopted and data used; section 3 presents the results; and the last section discusses the policy implications of the results.

Literature on SLR impacts is vast and well advanced. However, given that the focus of the present study is on assessing the relative vulnerability of coastal regions, the discussion here is limited to only a few aspects of this literature. After providing a brief overview of evidence for SLR and extreme climate events in India, this section outlines the literature on SLR impact assessment and India-specific studies.

The studies by Emery and Aubrey (1989) and Mahadevan (1992) have established weak evidence for rise in the mean sea level along the Indian coast. Analysis of historical tide-gauge data along peninsular India shows an average rise of sea level by 0.67 mm/yr as against the global average of 1.8 mm/yr (Asthana 1993). There are also studies refuting the link between sea-level rise and climate change and arguing that interdecadal changes in sea level along the Indian coast can be linked to the variability of the monsoon (for example, Shankar 1998).

Table 1 shows the occurrence of cyclonic storms in the Bay of Bengal during the period 1877 to 1995. According to Ali (1999), India is hit by 3.34 percent of the world's total tropical cyclonic storms; India and Bangladesh together are hit by only 4.27 percent of the world storms but suffer most, with 76 percent of total storm-related deaths occurring in the two countries. One necessary but insufficient condition for tropical cyclone formation is that the sea's surface should have a minimum temperature of about 26 to 27°C. This leads to speculation that any rise in sea surface temperature (SST) due to climate change is likely to be accompanied by an increase in cyclone frequency. However, evidence from the Bay of Bengal region suggests that even though there has been an increase in the SST since 1950, no corresponding increase in the frequency of cyclones can be established.

#### **Relative Vulnerability of Indian Coastal Districts**

|                              | India | Bangladesh | Dead | Total |
|------------------------------|-------|------------|------|-------|
| All types                    | 848   | 154        | 115  | 1,223 |
| Depressions                  | 539   | 68         | 69   | 715   |
| Cyclonic storms (CS)         | 197   | 43         | 35   | 310   |
| Severe cyclonic storms (SCS) | 112   | 43         | 11   | 198   |
| CS + SCS                     | 309   | 86         | 46   | 508   |
| % of global total (CS + SCS) | 3.34  | 0.93       | 0.5  | 5.5   |

Table 1. Cyclonic storms in the Bay of Bengal, 1877–1995

Source: Ali 1999.

Besides evidence from historical records, predictive climate models can also be used to analyze extreme climate events. In a recent study, Palmer and Raisanen (2002) analyzed the output of 19 climate models and estimated that the Asian monsoon region would experience a fivefold increase in amount of summer rainfall, escalating the risk of flooding in already flood-prone areas. On the other hand, there are reasons to expect the storm-surge height to increase, both due to climate change (and hence increase in SST) and to SLR. Using a numerical storm-surge model, Ali (1999) showed that the surge height of a cyclonic storm that hit the Bangladesh coast in April 1991 would be increased by as much as 40 percent if SST were to increase by 4°C and the sea level were to rise by 1 m.

The impact assessment studies can be classified into four generations of models (West and Dowlatabadi 1999). The first-generation models overlaid SLR scenarios onto topographical maps of coastal regions to assess the physical and economic impacts (Yohe 1990), whereas the second-generation models accounted for the possibility of human adaptation (Titus et al. 1991). The third-generation models brought in the possibility of perfect foresight of the markets while assessing the value of property at risk of inundation (Yohe et al. 1996). Fourth-generation models share the features of third-generation models but also take into consideration the present-day influence of extreme climate events such as cyclones (West, Dowlatabadi, and Small 2000).

The study coordinated by Jawaharlal Nehru University for Ministry of Environment and Forests, Government of India (Asthana 1993) is by far the most comprehensive effort undertaken to assess potential land loss due to SLR and the associated population at risk in India. Using the methodology of the first generation of impact models, this study estimated that a total area of 5,763 km<sup>2</sup> (i.e., 0.4 percent of the total area of the coastal states) would be affected, and that about 7.1 million people (some 4.6 percent of the total coastal population) would be at risk. ADB (1994) expressed these physical impacts in value terms by making some broad assumptions about the land value and population displacement costs. The overall economic damage was estimated to be as high as 43 percent of India's 1988 gross domestic product (GDP), while the annualized costs spread over a period of 40 years are estimated at 0.18 percent of GDP.

In a more recent study, TERI (1996) assumed that changes in GDP could be used as a proxy for land and capital losses due to SLR. An interesting observation of this study is that the cost of protection is

relatively low in districts that are prone to high economic impacts such as Mumbai, whereas the protection costs are higher in districts like Balasore and Goa where the impacts are likely to be less.

# 2. Methodology and data

To assess economic impacts due to SLR in accordance with the third- and fourth-generation models mentioned above, more precise estimates of the physical impacts than those available from Asthana (1993) would be required. In the absence of such information, the present study adopts two distinct but related strategies to assess the relative vulnerability of Indian coastal districts: First, given that the impacts due to sea-level rise are likely to be varied across different parts of the country, a district-level composite vulnerability index is developed to identify the most vulnerable coastal districts. Also, the vulnerability index would take both climate and non-climate factors into consideration and hence the analysis is a step forward from impact assessment. Second, Indian coastal districts are often affected by cyclonic storms. However, there are significant differences across districts in terms of their exposure and vulnerability to such storms. Hence, using human casualties—which are the most significant impacts due to the storms—it is possible to study the relative vulnerability of coastal districts.

#### 2.1. Coastal vulnerability index

Two aspects of index computation that deserve attention, namely the choice of components and the method of computation, are discussed in detail here. Use of the term *vulnerability* here is in accordance with the broad definition used in IPCC literature: vulnerability of a system is a function of its exposure and sensitivity to climate change, and its adaptive capacity. A wide range of characteristics of the system, including ecological, economic, social, demographic, technological, and political factors, is considered here to assess vulnerability. District-specific data on the following parameters (which are considered to influence vulnerability) is assembled:

**Demographic**: (a) population density based on the 2001 census (GoI 2001); (b) annual growth rate of population; (c) population at risk due to sea-level rise.

**Physical**: (a) coast length; (b) insularity (defined as ratio of coastal length to the area of the district); (c) frequency of cyclones (weighted to account for cyclones of different intensities) based on historic data; (d) probable maximum surge height; (e) area at risk of inundation due to SLR; (f) number of vulnerable houses—both those at risk of damage and of destruction (based on the 1991 census).

**Economic**: (a) agricultural dependency (expressed in terms of population dependent on agriculture and other primary sectors); (b) income and/or infrastructure index.

**Social**: (a) literacy; (b) spread of institutional set-up.

In terms of the IPCC definition of vulnerability, indicators like coastal length and frequency of cyclones represent the region's exposure, whereas population density and its growth rate, insularity, agricultural dependency of the population, area and population at risk due to SLR, probable maximum surge height, and number of vulnerable houses represent the region's sensitivity. Together these two sets characterize the potential impacts on the region. Socio-economic indicators like literacy and income represent the adaptive capacity of the region, and the vulnerability is the net result of potential impacts

and adaptive capacity. It may be noted that income can be considered both as a measure of adaptive capacity and as an indicator of sensitivity.

Table 2 shows district-specific data on the above parameters. It may be noted that some of the districts are clubbed for data consistency.<sup>1</sup> Income data at district level is not readily available and state-level value added in primary, secondary, and tertiary sectors is allocated across districts using the following procedure:

Income for  $k^{th}$  district is estimated as:

$$Income_k = Agricultural NDDP_k + Industrial NDDP_k + Services NDDP_k$$

where, NDDP is net district domestic product and NSDP is net state domestic product. Sector-wise NDDP for  $k^{th}$  district is calculated as:

Agricultural NDDP<sub>k</sub> =  $\left[\frac{\text{Net sown area in the district}}{\text{Total net sown area in the state}}\right] \times \text{Agricultural NSDP}$ 

Industrial  $NDDP_{k} =$ 

 $\left[\frac{Population \ employed \ in \ industrial \ sec \ tor \ in \ the \ district}{Population \ employed \ in \ industrial \ sec \ tor \ in \ the \ state}\right] \times Industrial \ NSDP$ 

Services NDDP<sub>k</sub> = 
$$\left[\frac{Population\ employed\ in\ service\ sec\ tor\ in\ the\ district}{Population\ employed\ in\ service\ sec\ tor\ in\ the\ state}\right] \times Services\ NSDP$$

Since the components of the index are often measured in different units, the observations have to be standardized or normalized to enable their use in index computation. The normalization procedure most commonly used is one that adjusts the observation to take a value of between 0 and 1, using the formula

 $V_{ij} = (X_{ij} - \min X_i) / (\max X_i - \min X_i)$ 

where,  $V_{ij}$  stands for the standardized observation associated with the *i*<sup>th</sup> component for region *j*;  $X_{ij}$  stands for the value of the *i*<sup>th</sup> component in the vulnerability index, for region *j*; max  $X_i$  and min  $X_i$  stand for the maximum and minimum values of the *i*<sup>th</sup> component for all regions in the index. The method is further refined to reduce the undue impact of outliers on the distribution of the observations, by

In Andhra Pradesh, Prakasam District is clubbed with Nellore District, and Vizianagaram District is clubbed with Vishakapatnam District. In Tamil Nadu, Pudukottai District is clubbed with the Thanjavur District, and Chidambaranar District is clubbed with Tirunelveli-Kattabomman District.

| districts       |
|-----------------|
| coastal         |
| of              |
| Characteristics |
| ц,              |
| Table           |

|        |                            |                |                 | Pon orowth | Pon     | Literacy |              |             | Share       |         |         |                     |                |               |                          |
|--------|----------------------------|----------------|-----------------|------------|---------|----------|--------------|-------------|-------------|---------|---------|---------------------|----------------|---------------|--------------------------|
| Serial |                            |                | 1000            | rate       | density | rate     | Coast        | Agri. labor | agri. in    | ф.      | Cyclone | - brind             | Area           | No. of vulner | able houses <sup>f</sup> |
| No.    | District                   | State          | Population 2001 | 10-1661    | 2001    | 2001     | length (km)" | force 1991  | value added | Income  | treq.   | PMSH <sup>°</sup> a | iffected (ha.) | Damaged       | Destroyed                |
| 1      | East Godavari              | Andhra Pradesh | 4,872,731       | 7.30       | 451     | 58       | 195.7        | 67.89       | 25.51       | 185,078 | 8       | 3.50                | 211,265        | 116,369       | 263,149                  |
| 5      | Guntur                     | Andhra Pradesh | 4,405,578       | 7.27       | 387     | 56       | 59.8         | 73.29       | 41.51       | 177,144 | 3       | 6.00                | 2,896          | 94,858        | 116,098                  |
| 3      | Krishna                    | Andhra Pradesh | 4,218,519       | 14.05      | 483     | 62       | 124.8        | 66.27       | 33.96       | 178,417 | 14      | 5.50                | 9,081          | 79,694        | 221,357                  |
| 4      | Nellore <sup>g</sup>       | Andhra Pradesh | 5,714,663       | 10.93      | 186     | 54       | 192.5        | 75.90       | 48.51       | 227,115 | 21      | 5.00                | 5,574          | 102,039       | 265,090                  |
| 5      | Srikakulam                 | Andhra Pradesh | 2,499,992       | 7.71       | 386     | 47       | 199.1        | 76.53       | 30.01       | 235,801 | 14      | 3.00                | 20,069         | 44,642        | 267,657                  |
| 9      | Visakhapatnam <sup>h</sup> | Andhra Pradesh | 6,224,866       | 15.36      | 340     | 52       | 129.8        | 62.24       | 21.36       | 148,988 | 8       | 3.00                | 4,896          | 93,664        | 275,456                  |
| 7      | West Godavari              | Andhra Pradesh | 3,796,159       | 7.92       | 490     | 65       | 13.7         | 71.99       | 35.35       | 144,176 | 0       | 4.00                | 1,219          | 80,970        | 145,852                  |
| ~      | North Goa                  | Goa            | 757,411         | 13.93      | 442     | 76       | 41.5         | 27.63       | 18.12       | 59,482  | 0       | 3.40                | 9,645          | 16,104        | 0                        |
| 6      | South Goa                  | Goa            | 586,595         | 16.16      | 301     | 71       | 67.2         | 28.53       | 15.54       | 42,902  | 0       | 3.40                | 6,042          | 12,516        | 0                        |
| 10     | Ahmedabad                  | Gujarat        | 6,079,574       | 26.61      | 667     | 70       | 35.0         | 26.59       | 11.99       | 401,289 | 0       | 4.00                | 16,425         | 67,187        | 62,223                   |
| 11     | Amreli                     | Gujarat        | 1,333,381       | 6.45       | 206     | 58       | 57.9         | 67.20       | 48.60       | 81,943  | 0       | 4.00                | 31,828         | 17,689        | 37,485                   |
| 12     | Bharuch                    | Gujarat        | 1,823,464       | 17.94      | 208     | 61       | 127.8        | 68.74       | 41.44       | 83,100  | 0       | 4.80                | 8,346          | 38,870        | 0                        |
| 13     | Bhavnagar                  | Gujarat        | 2,734,158       | 19.29      | 221     | 57       | 155.9        | 55.97       | 32.72       | 154,482 | 5       | 4.70                | 11,327         | 41,666        | 111,006                  |
| 14     | Jamnagar                   | Gujarat        | 1,913,639       | 22.39      | 135     | 55       | 285.1        | 57.58       | 42.44       | 114,594 | ω       | 2.50                | 11,421         | 42,806        | 121,301                  |
| 15     | Junagarh                   | Gujarat        | 2,791,914       | 16.58      | 281     | 59       | 241.0        | 67.43       | 38.86       | 126,270 | 10      | 2.80                | 3,002          | 47,822        | 221,774                  |
| 16     | Kachchh                    | Gujarat        | 1,526,371       | 20.90      | 33      | 61       | 472.2        | 57.68       | 52.52       | 110,740 | 3       | 2.50                | 37,774         | 56,868        | 71,767                   |
| 17     | Kheda                      | Gujarat        | 3,893,011       | 13.14      | 539     | 64       | 27.8         | 70.43       | 29.87       | 143,548 | 0       | 4.80                | 33,872         | 38,759        | 0                        |
| 18     | Surat                      | Gujarat        | 4,996,272       | 47.04      | 653     | 65       | 51.5         | 44.84       | 14.45       | 226,995 | 0       | 4.80                | 12,526         | 75,750        | 0                        |
| 19     | Valsad                     | Gujarat        | 2,639,894       | 21.45      | 503     | 63       | 74.5         | 62.18       | 22.27       | 108,127 | 0       | 5.00                | 14,479         | 62,325        | 0                        |
| 20     | Dakshin Kannad             | Karnataka      | 3,005,994       | 11.57      | 356     | 73       | 151.1        | 42.53       | 11.06       | 144,389 | 2       | 3.40                | 19,209         | 49,834        | 0                        |

#### International Review for Environmental Strategies

| led      |
|----------|
| ntinu    |
| 00       |
| N        |
| <u>e</u> |
| Tab      |

|     |                        |             |                 | Pop. growth     | Pop.   | Literacy | Ċ                                 | -                         | Share<br>of           |                     | -                    |                   | -                                   | No. of vulner | able houses <sup>f</sup> |
|-----|------------------------|-------------|-----------------|-----------------|--------|----------|-----------------------------------|---------------------------|-----------------------|---------------------|----------------------|-------------------|-------------------------------------|---------------|--------------------------|
| No. | u<br>District          | State       | Population 2001 | rate<br>1991–01 | 2001   | 2001     | Loast<br>length (km) <sup>a</sup> | Agri. labor<br>force 1991 | аgп. ш<br>value added | Income <sup>b</sup> | freq.                | PMSH <sup>d</sup> | Area<br>affected (ha.) <sup>e</sup> | Damaged       | Destroyed                |
| 21  | Uttar Kannad           | Karnataka   | 1,353,268       | 10.90           | 132    | 67       | 142.3                             | 65.45                     | 18.10                 | 44,401              | 0                    | 3.70              | 9,321                               | 21,125        | 0                        |
| 22  | Alappuzha              | Kerala      | 2,105,480       | 5.21            | 1,676  | 84       | 82.0                              | 40.13                     | 22.45                 | 72,704              | 0                    | 3.00              | 1,148                               | 45,354        | 0                        |
| 23  | Ernakulam              | Kerala      | 3,073,323       | 9.09            | 1,287  | 84       | 46.0                              | 32.21                     | 24.15                 | 116,966             | 1                    | 3.00              | 320                                 | 48,226        | 0                        |
| 24  | Kannur                 | Kerala      | 2,412,275       | 7.13            | 805    | 82       | 82.0                              | 39.74                     | 32.17                 | 93,263              | 1                    | 3.00              | 952                                 | 43,075        | 0                        |
| 25  | Kasaragod              | Kerala      | 1,203,303       | 12.30           | 614    | 74       | 70.0                              | 48.21                     | 44.67                 | 47,740              | 1                    | 3.00              | 1,820                               | 24,306        | 0                        |
| 26  | Kollam                 | Kerala      | 2,584,041       | 7.33            | 1,002  | 81       | 37.0                              | 46.28                     | 27.17                 | 83,213              | 0                    | 2.40              | 2,358                               | 52,933        | 0                        |
| 27  | Kozhikode              | Kerala      | 2,878,529       | 9.87            | 1,228  | 82       | 71.0                              | 32.26                     | 23.97                 | 107,312             | 2                    | 3.50              | 1,430                               | 57,123        | 0                        |
| 28  | Malappuram             | Kerala      | 3,629,518       | 17.22           | 1,023  | 76       | 70.0                              | 53.16                     | 32.52                 | 97,986              | 1                    | 3.40              | 666                                 | 54,658        | 0                        |
| 29  | Thiruvananthapuram     | Kerala      | 3,234,832       | 9.78            | 1,476  | 80       | 78.0                              | 46.98                     | 24.06                 | 94,122              | 1                    | 2.30              | 2,004                               | 60,353        | 0                        |
| 30  | Thrissur               | Kerala      | 2,975,457       | 8.70            | 981    | 83       | 54.0                              | 38.45                     | 23.92                 | 103,191             | 0                    | 3.40              | 968                                 | 53,588        | 0                        |
| 31  | Greater Mumbai         | Maharashtra | 11,914,276      | 20.03           | 11,879 | 77       | 58.3                              | 0.67                      | 0.00                  | 1,377,002           | $\tilde{\mathbf{c}}$ | 4.20              | 8,675                               | 69,429        | 0                        |
| 32  | Raigarh                | Maharashtra | 2,206,020       | 20.89           | 309    | 67       | 127.7                             | 85.53                     | 50.94                 | 76,459              | 2                    | 4.10              | 4,908                               | 43,139        | 0                        |
| 33  | Ratnagiri              | Maharashtra | 1,696,455       | 9.87            | 206    | 65       | 184.7                             | 76.14                     | 24.68                 | 69,367              | 2                    | 3.00              | 1,808                               | 4,208         | 0                        |
| 34  | Sindhudurg             | Maharashtra | 861,693         | 3.55            | 165    | 71       | 110.9                             | 75.76                     | 21.25                 | 36,320              | 0                    | 2.90              | 3,241                               | 22,852        | 0                        |
| 35  | Thane                  | Maharashtra | 8,128,797       | 54.86           | 850    | 70       | 184.0                             | 32.81                     | 3.68                  | 528,680             | 0                    | 4.20              | 22,727                              | 93,622        | 0                        |
| 36  | Baleshwar              | Orissa      | 3,355,204       | 19.73           | 532    | 62       | 130.3                             | 77.91                     | 40.62                 | 70,386              | 19                   | 9.80              | 11,800                              | 9,128         | 390,930                  |
| 37  | Cuttack                | Orissa      | 6,273,724       | 13.60           | 422    | 68       | 150.6                             | 65.99                     | 24.97                 | 172,137             | 17                   | 5.50              | 17,700                              | 56,651        | 564,168                  |
| 38  | Ganjam                 | Orissa      | 3,664,482       | 16.01           | 250    | 54       | 62.0                              | 76.95                     | 37.41                 | 80,987              | L                    | 2.70              | 100                                 | 64,403        | 138,449                  |
| 39  | Puri                   | Orissa      | 4,313,232       | 20.14           | 331    | 70       | 147.2                             | 64.63                     | 16.02                 | 103,205             | 10                   | 3.20              | 17,600                              | 49,549        | 216,519                  |
| 40  | Chengalpattu           | Tamilnadu   | 5,608,905       | 20.53           | 714    | 68       | 152.9                             | 51.20                     | 11.58                 | 258,011             | 15                   | 3.00              | 13,440                              | 100,471       | 366,459                  |
| 41  | Kanniyakumari          | Tamilnadu   | 1,669,804       | 4.34            | 992    | 79       | 65.0                              | 58.82                     | 10.74                 | 73,601              | 2                    | 2.70              | 117                                 | 25,134        | 0                        |
| 42  | Madras                 | Tamilnadu   | 4,216,316       | 9.76            | 24,231 | 73       | 17.0                              | 0.94                      | 0.00                  | 376,698             | 15                   | 5.45              | 3,378                               | 86,650        | 91,635                   |
| 43  | Ramanathapuram         | Tamilnadu   | 1,209,593       | 5.73            | 280    | 64       | 186.2                             | 74.21                     | 40.48                 | 48,915              | б                    | 11.00             | 9,908                               | 22,111        | 1,725                    |
| 44  | South Arcot            | Tamilnadu   | 5,224,367       | 7.09            | 480    | 60       | 79.4                              | 80.16                     | 37.32                 | 153,419             | ŝ                    | 3.00              | 4,272                               | 94,603        | 219,049                  |
| 45  | Thanjavur <sup>i</sup> | Tamilnadu   | 6,309,967       | 7.70            | 488    | 67       | 225.9                             | 73.03                     | 30.49                 | 224,617             | 13                   | 7.00              | 14,300                              | 259,674       | 62,062                   |

#### Relative Vulnerability of Indian Coastal Districts

2006

| 5  |
|----|
| ň  |
| 2  |
| 2  |
| 2  |
| ÷. |
| 3  |
| ≿  |
| 2  |
| Q  |
|    |
|    |
| 2  |
| Ð  |
| -  |
| 0  |
| ß  |
| Ĕ  |

| Sarr   | -                         |                     |                       | Pop. growth      | Pop.     | Literacy | Coact                    | A orri Tahor | Share<br>of    |                     | Cuclone      |                   | Area A                      | No. of vulne  | able houses <sup>f</sup> |
|--------|---------------------------|---------------------|-----------------------|------------------|----------|----------|--------------------------|--------------|----------------|---------------------|--------------|-------------------|-----------------------------|---------------|--------------------------|
| NC     | District                  | State               | Population 2001       | 1991–01          | 2001     | 2001     | length (km) <sup>a</sup> | force 1991   | value added    | Income <sup>b</sup> | freq.        | PMSH <sup>d</sup> | affected (ha.) <sup>e</sup> | Damaged       | Destroyed                |
| 46     | Tirunel veli <sup>j</sup> | Tamilnadu           | 4,366,995             | 10.34            | 382      | 70       | 163.3                    | 55.64        | 17.95          | 216,787             | 2            | 6.00              | 21,585                      | 56,973        | 0                        |
| 47     | Medinipur                 | W. Bengal           | 9,638,356             | 15.68            | 685      | 65       | 107.1                    | 69.30        | 48.49          | 348,638             | 12           | 12.50             | 20,700                      | 64,721        | 1,237,475                |
| 48     | North 24 Parganas         | W. Bengal           | 8,930,499             | 22.64            | 2,181    | 70       | 74.2                     | 35.74        | 14.56          | 382,458             | 23           | 12.00             | 29,567                      | 136,002       | 570,240                  |
| 49     | South 24 Parganas         | W. Bengal           | 6,908,900             | 20.89            | 694      | 09       | 118.0                    | 59.58        | 31.00          | 233,973             | 23           | 12.25             | 71,933                      | 67,086        | 599,244                  |
| Notes: | a. Author's calculation   | 1 using GIS; b. Ba  | sed on the author's e | stimations, usi  | ng 1990- | 91 SDP d | ata, in hundre           | d-thousands  | (lakh) of rupe | es; c. Based        | l on data f  | rom the Iı        | ndia Meteorolog             | ical Departme | nt in various            |
|        | issues of Mausam mag      | gazine. No specific | c references provided | l. d. Probable r | naximum  | surge he | ight; from dat           | a BMTPC 19   | 97, in meters  | ; e. The figu       | ures are fro | m JNU 1           | 993 and are for             | l m SLR; f. D | ata from BMTPC           |
|        | 1997, based on 1991 c     | ensus data.         |                       |                  |          |          |                          |              |                |                     |              |                   |                             |               |                          |

assigning the value of 1 to the top decile of values in the observations of a particular variable and a value of 0 to the bottom decile.

The averaging procedure to compute the final index can be based on assigning equal or varying weights to each component. Briguglio (1995) experimented with varying weights for each component, but the preferred method was that involving equal weights. Many index-based studies have followed this procedure (for example, Brenkert and Malone 2004; Briguglio 1995, 1997; O'Brien et al. 2004; Wells 1996).<sup>2</sup>

In this study, the composite index for each district is calculated by taking the average of all the standardized observations over all the components. The averaging procedure implies that equal weights are assigned to each component. The procedure is similar to that followed in the construction of the Human Development Index by the UNDP (see UNDP 2002). The index computations are made for a range of combinations of the parameters listed above. The components of the different indices are as follows:

- V1 = Insularity, population density, population growth, population dependent on agriculture, literate population, vulnerable houses (total), probable maximum surge height, and cyclone frequency.
- V2 = Insularity, population density, population growth, population in agriculture, literate population, vulnerable houses (at risk of being destroyed), probable maximum surge height, and cyclone frequency.
- V3 = Insularity, population density, population growth, population in agriculture, literate population, vulnerable houses (at risk of being damaged), probable maximum surge height, and cyclone frequency.
- V4 = V1 + income as vulnerability indicator.
- V5 = V1 + income as resilience indicator.
- V6 = V1 insularity + area affected due to sea-level rise.
- V7 = V6 + income as vulnerability indicator.
- V8 = V6 + income as resilience indicator.

The indices V3, V2, and V1 differ in terms of categories of vulnerable houses: V2 includes houses at risk of being destroyed, V3 includes houses at risk of being damaged but not destroyed, and V1 includes houses in both categories. Three different indices are considered because in some coastal districts, more houses are at risk of damage, whereas in other districts, more houses are at risk of destruction. The indices V4 and V5 are more complete indices (in comparison to V1), as they include an income component also. However, they differ in terms of considering income as an indicator of adaptive capacity (or resilience) and as an indicator of sensitivity. The index V6 is a variant of index V1 but

<sup>2.</sup> Other methods include: (a) mapping on a categorical scale, which is suitable for qualitative data and involves mapping the scores on a categorical scale ranging from the lowest possible incidence to the highest (see Kaly et al. 1998); and (b) the regression method, which lets the data produce the weights and does not require normalization of the observations. However, the regression method has a number of methodological problems that limit the operationalization and reliability of the index, the most important limitation being the need to identify a proxy for vulnerability to serve as a dependent variable (see ; Atkins, Mazzi, and Ramlogan 1998; Wells 1996).

replaces the insularity indicator with the estimated potential area affected due to SLR. Finally, indices V7 and V8 again represent improvements over V6 as they include an income component. Different indices are constructed to check whether relative ranking across districts varies with the choice of components for the index.

#### 2.2. Storms and human casualties

Given sufficient warning and resources, it is always possible to minimize the human loss during cyclonic storms. Broadly, the loss of human lives would depend on the risk level of the region, warning time, and compliance with the evacuation plan. Compliance with a warning would further depend on the preparedness of the region to evacuate the affected population to cyclone shelters as well as the confidence of the people in the reliability of the warning. Due to high levels of literacy and the credibility of the forecasts, in developed countries non-compliance factors would typically be low, whereas they would be high in a developing country.

The loss of human lives in any region can be estimated using the formula

$$H = \sum_i P C \alpha_i r_i$$

where *P* is the population of the region, *C* is the non-compliance factor,  $\alpha_i$  is the fraction of the region's area related to a given hazard level, and  $r_i$  is the risk coefficient for the hazard level.

For each coastal district, the area with different hazard levels—which are defined based on wind velocities that would prevail during a storm and the storm penetration—is assessed using the *Vulnerability Atlas of India* (BMTPC 1997). The *Vulnerability Atlas* defines the following hazard levels for various wind speeds: very high (VH): 50 to 55 m/sec; high (H): 47 to 50 m/sec; moderate (M): 39 to 47 m/sec; and low (L): 33 to 39 m/sec. Each VH hazard zone is further classified into two zones, because part of a VH zone would be at higher risk due to the influence of surge. The surge influence factor for a district is calculated by the formula

surge influence factor = 
$$(coast length \times inland penetration)/(area)$$

where the coast length and area represent the district-specific values, and inland penetration is a parameter that is changed to generate different scenarios.

Thus for the analysis, four hazard levels are considered: VH + surge, VH, H, and M. The risk coefficients for various hazard levels are gathered from disaster-management literature (Krishna and Bhandari 1999): VH + surge:  $5 \times 10^{-2}$ ; VH:  $5 \times 10^{-3}$ ; H:  $5 \times 10^{-5}$ ; and M:  $5 \times 10^{-8}$ . These risk coefficients reflect the probability of death due to storm; estimates of human casualties during the two major cyclones that crossed the coast of Andhra Pradesh in 1977 and 1990 made using these coefficients are close to the real figures (BMTPC 1998). The surge influence factor is calculated for two different scenarios of surge penetration: 10 km and 30 km. Two different scenarios for non-compliance factors are used to represent the extent of compliance observed during the 1977 and 1990 Andhra Pradesh cyclones. Since the present analysis assumes that the non-compliance factor is linearly related to human casualties, the two scenarios merely represent the extent of impact under different confidence levels in the cyclone warnings.

| Tabl          | e 3. Vulnerability | indices fo | r coast    | tal district | ŝ          |        |            |        |            |        |            |        |            |        |            |        |            |
|---------------|--------------------|------------|------------|--------------|------------|--------|------------|--------|------------|--------|------------|--------|------------|--------|------------|--------|------------|
| Serial<br>No. | District           | V1         | V1<br>rank | V2           | V2<br>rank | V3     | V3<br>rank | V4     | V4<br>rank | V5     | V5<br>rank | V6     | V6<br>rank | ٢٧     | V7<br>rank | V8     | V8<br>rank |
| -             | East Godavari      | 0.3192     | 17         | 0.3011       | 17         | 0.3260 | 21         | 0.2967 | 17         | 0.3818 | 16         | 0.4224 | 9          | 0.3885 | 7          | 0.4736 | 9          |
| 7             | Guntur             | 0.2786     | 30         | 0.2633       | 31         | 0.3012 | 31         | 0.2600 | 30         | 0.3464 | 33         | 0.2752 | 26         | 0.2569 | 26         | 0.3434 | 26         |
| б             | Krishna            | 0.3887     | 6          | 0.3749       | 10         | 0.3852 | 12         | 0.3579 | 11         | 0.4441 | 11         | 0.3772 | 12         | 0.3477 | 11         | 0.4339 | 12         |
| 4             | Nellore            | 0.3872     | 10         | 0.3750       | 6          | 0.3862 | 11         | 0.3606 | 10         | 0.4388 | 12         | 0.3841 | 6          | 0.3578 | 6          | 0.4360 | 10         |
| 5             | Srikakulam         | 0.3416     | 15         | 0.3301       | 15         | 0.3123 | 27         | 0.3208 | 16         | 0.3976 | 14         | 0.3343 | 15         | 0.3143 | 15         | 0.3911 | 15         |
| 9             | Visakhapatnam      | 0.2875     | 28         | 0.2760       | 26         | 0.2829 | 41         | 0.2656 | 25         | 0.3566 | 28         | 0.2770 | 25         | 0.2562 | 27         | 0.3473 | 25         |
| L             | West Godavari      | 0.2718     | 36         | 0.2560       | 37         | 0.2854 | 39         | 0.2512 | 32         | 0.3431 | 34         | 0.2719 | 27         | 0.2513 | 29         | 0.3432 | 27         |
| 8             | North Goa          | 0.2363     | 48         | 0.2210       | 49         | 0.2795 | 43         | 0.2127 | 49         | 0.3185 | 48         | 0.2127 | 48         | 0.1917 | 48         | 0.2975 | 46         |
| 6             | South Goa          | 0.2443     | 45         | 0.2291       | 45         | 0.2871 | 37         | 0.2185 | 46         | 0.3270 | 42         | 0.2052 | 49         | 0.1837 | 49         | 0.2923 | 48         |
| 10            | Ahmedabad          | 0.2352     | 49         | 0.2268       | 48         | 0.2497 | 48         | 0.2399 | 37         | 0.2894 | 49         | 0.2414 | 34         | 0.2454 | 31         | 0.2949 | 47         |
| 11            | Amreli             | 0.2397     | 47         | 0.2291       | 46         | 0.2441 | 49         | 0.2175 | 48         | 0.3196 | 47         | 0.2491 | 33         | 0.2259 | 34         | 0.3280 | 32         |
| 12            | Bharuch            | 0.2735     | 35         | 0.2561       | 36         | 0.3224 | 22         | 0.2477 | 35         | 0.3496 | 31         | 0.2618 | 31         | 0.2373 | 32         | 0.3392 | 28         |
| 13            | Bhavnagar          | 0.2938     | 23         | 0.2801       | 22         | 0.2921 | 36         | 0.2717 | 22         | 0.3618 | 24         | 0.2841 | 23         | 0.2630 | 23         | 0.3532 | 23         |
| 14            | Jamnagar           | 0.3076     | 20         | 0.2893       | 20         | 0.3030 | 30         | 0.2806 | 20         | 0.3773 | 17         | 0.2898 | 20         | 0.2648 | 22         | 0.3615 | 19         |
| 15            | Junagarh           | 0.3693     | 14         | 0.3567       | 14         | 0.3384 | 19         | 0.3364 | 14         | 0.4312 | 13         | 0.3433 | 13         | 0.3133 | 16         | 0.4081 | 13         |
| 16            | Kachchh            | 0.2935     | 24         | 0.2668       | 29         | 0.3334 | 20         | 0.2678 | 24         | 0.3651 | 20         | 0.3041 | 19         | 0.2772 | 19         | 0.3746 | 17         |
| 17            | Kheda              | 0.2502     | 40         | 0.2429       | 40         | 0.2710 | 46         | 0.2320 | 41         | 0.3240 | 43         | 0.2670 | 29         | 0.2469 | 30         | 0.3388 | 29         |
| 18            | Surat              | 0.3094     | 19         | 0.2935       | 19         | 0.3539 | 17         | 0.2914 | 18         | 0.3697 | 19         | 0.3097 | 17         | 0.2918 | 18         | 0.3700 | 18         |
| 19            | Valsad             | 0.2883     | 27         | 0.2645       | 30         | 0.3549 | 16         | 0.2629 | 26         | 0.3607 | 26         | 0.2801 | 24         | 0.2556 | 28         | 0.3534 | 22         |
| 20            | Dakshin Kannad     | 0.2464     | 43         | 0.2343       | 44         | 0.2804 | 42         | 0.2286 | 43         | 0.3205 | 45         | 0.2362 | 39         | 0.2196 | 35         | 0.3114 | 40         |
| 21            | Uttar Kannad       | 0.2487     | 42         | 0.2362       | 42         | 0.2838 | 40         | 0.2225 | 45         | 0.3308 | 40         | 0.2380 | 36         | 0.2129 | 38         | 0.3212 | 35         |
| 22            | Alappuzha          | 0.2999     | 21         | 0.2862       | 21         | 0.3385 | 18         | 0.2704 | 23         | 0.3740 | 18         | 0.2271 | 45         | 0.2056 | 46         | 0.3092 | 41         |
| 23            | Ernakulam          | 0.2462     | 44         | 0.2358       | 43         | 0.2756 | 44         | 0.2262 | 4          | 0.3226 | 4          | 0.2233 | 47         | 0.2059 | 45         | 0.3022 | 45         |
| 24            | Kannur             | 0.2608     | 38         | 0.2478       | 38         | 0.2976 | 34         | 0.2373 | 38         | 0.3375 | 39         | 0.2272 | 44         | 0.2074 | 4          | 0.3077 | 43         |

# Relative Vulnerability of Indian Coastal Districts

13

| Tabl          | e 3continue | J      |            |        |            |        |            |        |            |        |            |
|---------------|-------------|--------|------------|--------|------------|--------|------------|--------|------------|--------|------------|
| Serial<br>No. | District    | ٧١     | V1<br>rank | V2     | V2<br>rank | V3     | V3<br>rank | V4     | V4<br>rank | V5     | V5<br>rank |
| 25            | Kasaragod   | 0.2762 | 31         | 0.2609 | 33         | 0.3192 | 25         | 0.2472 | 36         | 0.3550 | 29         |
| 26            | Kollam      | 0.2398 | 46         | 0.2275 | 47         | 0.2744 | 45         | 0.2178 | 47         | 0.3197 | 46         |

| Serial | District           | V1     | V1<br>rank | 77     | V2<br>rank | V3     | V3<br>rank | $\mathbf{V}_{\mathbf{A}}$ | V4<br>rank | 74     | V5<br>rank | V6     | V6<br>rank |        | V7<br>rank | V.8    | V8<br>rank |
|--------|--------------------|--------|------------|--------|------------|--------|------------|---------------------------|------------|--------|------------|--------|------------|--------|------------|--------|------------|
| 25     | Kasaragod          | 0 2762 | 31         | 0.2609 | 33         | 0.3192 | 25         | 0 2472                    | 36         | 0 3550 | 66         | 0.7334 | 40         | 0 2092 | 43         | 0.3169 | 36         |
| 3      | nasaasu            | 7017.0 | 10         | C007.0 | 2          | 7/10.0 | 3          | 7/ +7.0                   | 00         | 00000  | G          | +007.0 | P          | 7607.0 | f          | C010.0 | R          |
| 26     | Kollam             | 0.2398 | 46         | 0.2275 | 47         | 0.2744 | 45         | 0.2178                    | 47         | 0.3197 | 46         | 0.2236 | 46         | 0.2034 | 47         | 0.3053 | 4          |
| 27     | Kozhikode          | 0.2735 | 34         | 0.2583 | 35         | 0.3162 | 26         | 0.2497                    | 34         | 0.3477 | 32         | 0.2368 | 38         | 0.2170 | 37         | 0.3150 | 37         |
| 28     | Malappuram         | 0.2832 | 29         | 0.2697 | 27         | 0.3211 | 24         | 0.2576                    | 31         | 0.3570 | 27         | 0.2599 | 32         | 0.2368 | 33         | 0.3363 | 31         |
| 29     | Thiruvananthapuram | 0.2750 | 33         | 0.2630 | 32         | 0.3087 | 28         | 0.2499                    | 33         | 0.3500 | 30         | 0.2317 | 42         | 0.2115 | 40         | 0.3116 | 39         |
| 30     | Thrissur           | 0.2502 | 41         | 0.2373 | 41         | 0.2865 | 38         | 0.2287                    | 42         | 0.3273 | 41         | 0.2294 | 43         | 0.2102 | 42         | 0.3088 | 42         |
| 31     | Greater Mumbai     | 0.3835 | 13         | 0.3800 | 8          | 0.3934 | 8          | 0.4520                    | 9          | 0.3409 | 36         | 0.2649 | 30         | 0.3466 | 12         | 0.2355 | 49         |
| 32     | Raigarh            | 0.3153 | 18         | 0.3001 | 18         | 0.3581 | 15         | 0.2843                    | 19         | 0.3873 | 15         | 0.3071 | 18         | 0.2770 | 20         | 0.3800 | 16         |
| 33     | Ratnagiri          | 0.2595 | 39         | 0.2590 | 34         | 0.2607 | 47         | 0.2341                    | 39         | 0.3383 | 38         | 0.2330 | 41         | 0.2106 | 41         | 0.3148 | 38         |
| 34     | Sindhudurg         | 0.2614 | 37         | 0.2448 | 39         | 0.3079 | 29         | 0.2331                    | 40         | 0.3427 | 35         | 0.2374 | 37         | 0.2117 | 39         | 0.3213 | 34         |
| 35     | Thane              | 0.3285 | 16         | 0.3175 | 16         | 0.3593 | 14         | 0.3332                    | 15         | 0.3618 | 25         | 0.3186 | 16         | 0.3245 | 14         | 0.3531 | 24         |
| 36     | Baleshwar          | 0.5734 | 1          | 0.5734 | 1          | 0.4542 | 5          | 0.5133                    | 3          | 0.6173 | 1          | 0.5553 | 2          | 0.4972 | 4          | 0.6012 | 7          |
| 37     | Cuttack            | 0.4614 | 9          | 0.4545 | 9          | 0.3907 | 6          | 0.4220                    | L          | 0.5093 | 9          | 0.4560 | 5          | 0.4172 | 2          | 0.5045 | S          |
| 38     | Ganjam             | 0.2900 | 25         | 0.2773 | 25         | 0.2955 | 35         | 0.2622                    | 27         | 0.3645 | 22         | 0.2854 | 22         | 0.2581 | 24         | 0.3603 | 20         |
| 39     | Puri               | 0.3844 | 12         | 0.3732 | 11         | 0.3599 | 13         | 0.3480                    | 12         | 0.4466 | 10         | 0.3778 | 11         | 0.3421 | 13         | 0.4407 | 8          |
| 40     | Chengalpattu       | 0.4063 | ٢          | 0.3908 | L          | 0.3875 | 10         | 0.3802                    | 8          | 0.4533 | L          | 0.3907 | 8          | 0.3663 | 8          | 0.4394 | 6          |
| 41     | Kanniyakumari      | 0.2894 | 26         | 0.2777 | 24         | 0.3223 | 23         | 0.2611                    | 28         | 0.3645 | 21         | 0.2411 | 35         | 0.2181 | 36         | 0.3216 | 33         |
| 42     | Madras             | 0.5349 | 4          | 0.5135 | 5          | 0.5708 | 1          | 0.5042                    | 4          | 0.5578 | 4          | 0.4118 | L          | 0.3948 | 9          | 0.4484 | ٢          |
| 43     | Ramanathapuram     | 0.3853 | 11         | 0.3716 | 12         | 0.4221 | L          | 0.3443                    | 13         | 0.4518 | ~          | 0.3358 | 14         | 0.3003 | 17         | 0.4078 | 14         |
| 44     | South Arcot        | 0.2942 | 22         | 0.2798 | 23         | 0.2982 | 33         | 0.2719                    | 21         | 0.3622 | 23         | 0.2890 | 21         | 0.2672 | 21         | 0.3576 | 21         |
| 45     | Thanjavur          | 0.3957 | 8          | 0.3628 | 13         | 0.4796 | 4          | 0.3680                    | 6          | 0.4466 | 6          | 0.3832 | 10         | 0.3569 | 10         | 0.4355 | 11         |
| 46     | Tirunelveli        | 0.2760 | 32         | 0.2677 | 28         | 0.2992 | 32         | 0.2609                    | 29         | 0.3408 | 37         | 0.2719 | 28         | 0.2573 | 25         | 0.3372 | 30         |
| 47     | Medinipur          | 0.5256 | 5          | 0.5225 | 4          | 0.4263 | 9          | 0.4937                    | 5          | 0.5519 | 5          | 0.5297 | 4          | 0.4973 | 3          | 0.5555 | 4          |
| 48     | North 24 Parganas  | 0.5467 | б          | 0.5327 | ю          | 0.5205 | 6          | 0.5152                    | 7          | 0.5678 | б          | 0.5424 | с          | 0.5114 | 2          | 0.5640 | ю          |

| Serial |                   |        | V1   |        | V2   |        | V3   |        | V4   |        | V5   |        | V6   |        | LΛ   |        | V8   |
|--------|-------------------|--------|------|--------|------|--------|------|--------|------|--------|------|--------|------|--------|------|--------|------|
| No.    | District          | Vl     | rank | V2     | rank | V3     | rank | V4     | rank | V5     | rank | V6     | rank | ٢٧     | rank | V8     | rank |
| 49     | South 24 Parganas | 0.5633 | 2    | 0.5550 | 7    | 0.4932 | 33   | 0.5177 | -    | 0.5948 | 7    | 0.5921 | -    | 0.5434 | -    | 0.6204 | -    |

Table 3. —continued

# 3. Results and discussion

Computed vulnerability indices for the coastal districts along with their ranks according to each of the specifications described in the previous section are shown in table 3, while figure 1 shows the vulnerability index as per specification V1. The rank correlation between various vulnerability indices is shown in table 4. The correlations are significantly high between various indices, indicating that the relative ranking of the districts across different index specification is robust. Discussion here focuses on the highlighted rank correlations shown in table 4. Very high (0.99) and high (0.91) rank correlation between indices V1 and V2 and between V1 and V3, respectively, suggest that including either total vulnerable houses or houses that are at risk of destruction or damage may not change the overall ranking. Interestingly, the very high correlations between V1 and V4 and between V1 and V5 indicate that including income as either a resilience indicator or a sensitivity indicator does not influence the vulnerability rankings. One may argue, based on this result, that vulnerability across the Indian coastal districts is mainly determined by the potential physical impacts. However, rankings change significantly when the literacy component is taken out of the overall index calculation, justifying a role for adaptive capacity in the definition of vulnerability. High correlation between indices V4 and V5 (and also between V7 and V8) is surprising because these indices treat income in opposite ways. A careful look at the rankings in table 3 shows that the ranking of Greater Mumbai is reversed across these indices, in accordance with the hypothesis. However, it does not translate into the overall rank correlation because of the large difference between income levels of Greater Mumbai (which includes the commercial hub of India) and other districts.

|    | V1   | V2   | V3   | V4   | V5   | V6   | V7   | V8   |
|----|------|------|------|------|------|------|------|------|
| V1 | 1.00 | -    | -    | -    | -    | -    | -    | -    |
| V2 | 0.99 | 1.00 | -    | -    | -    | -    | -    | -    |
| V3 | 0.91 | 0.89 | 1.00 | -    | -    | -    | -    | -    |
| V4 | 0.98 | 0.98 | 0.89 | 1.00 | -    | -    | -    | -    |
| V5 | 0.96 | 0.94 | 0.87 | 0.92 | 1.00 | -    | -    | -    |
| V6 | 0.89 | 0.87 | 0.75 | 0.90 | 0.87 | 1.00 | -    | -    |
| V7 | 0.90 | 0.89 | 0.77 | 0.92 | 0.83 | 0.98 | 1.00 | -    |
| V8 | 0.86 | 0.83 | 0.72 | 0.83 | 0.90 | 0.96 | 0.89 | 1.00 |

Table 4. Rank correlation between various vulnerability indices



Figure 1. Map of Indian coastal districts showing vulnerability index (using index V1)

The vulnerability index indicates that:

- The districts along the east coast are relatively more vulnerable than those on the west coast.
- The coastal districts in the states of West Bengal, Orissa, Andhra Pradesh, and Tamil Nadu are only marginally different from each other in terms of their vulnerability.
- The districts that are frequently affected by cyclonic storms are relatively more vulnerable—these include districts like 24 Paraganas, Baleshwar, and Krishna.

As well as districts on the east coast of India being more vulnerable compared to those on the west coast, more cyclones hit the east coast than hit the west coast. The estimated human casualties for the coastal districts along the east coast under different scenarios are presented in table 5. The last two

columns show the likely losses due to more-severe cyclonic storms with higher inland surge penetration, which are expected under climate-change conditions. As mentioned in the previous section, the non-compliance factors are chosen merely to reflect the extent of damage observed in the two earlier cyclones that crossed the coast of Andhra Pradesh. In 1977, the early warnings were not sufficiently credible and compliance was very low. Added to that, the cyclone surge was very severe and the damage was some of the worst in India's history. In contrast, the 1990 cyclone, while comparable in severity to that of 1977, was marked by credible early warning and, as a result, high compliance. Table 5 shows damage corresponding to non-compliance factors of 0.1 and 0.0065 (adapted from BMTPC 1998), reflecting these two extreme scenarios.

Comparison of the results shown in table 5 with those presented under the vulnerability index shows that the relative ranking of districts remains more or less similar between the two analyses. This is an important result because the two analyses address vulnerability from two related but different perspectives and their similarity shows the robustness of the findings.

# 4. Conclusions and policy implications

This study estimated the relative vulnerability of coastal districts of India using an integrated vulnerability index that takes into account impact—induced by present-day and future climate pressures,

|               | Surge I | Surge Penetration – 10<br>km |      | Surge Penetration – 30<br>km |  |
|---------------|---------|------------------------------|------|------------------------------|--|
| NCF           | 0.1     | 0.0065                       | 0.1  | 0.0065                       |  |
| District      |         |                              |      |                              |  |
| East Godavari | 167     | 334                          | 374  | 747                          |  |
| Guntur        | 34      | 68                           | 56   | 112                          |  |
| Krishna       | 105     | 211                          | 224  | 448                          |  |
| Nellore       | 79      | 158                          | 136  | 273                          |  |
| Srikakulam    | 218     | 436                          | 476  | 952                          |  |
| Visakhapatnam | 94      | 187                          | 168  | 336                          |  |
| West Godavari | 33      | 66                           | 42   | 84                           |  |
| Baleshwar     | 192     | 384                          | 441  | 882                          |  |
| Cuttack       | 186     | 372                          | 390  | 780                          |  |
| Ganjam        | 36      | 71                           | 57   | 115                          |  |
| Puri          | 98      | 196                          | 209  | 417                          |  |
| South Arcot   | 71      | 142                          | 127  | 254                          |  |
| Medinipur     | 310     | 620                          | 562  | 1124                         |  |
| N 24 Parganas | 470     | 940                          | 1053 | 2105                         |  |
| S 24 Parganas | 286     | 571                          | 580  | 1160                         |  |

Table 5: Expected Casualties due to Storms

*Note:* NCF – non-compliance factor, value 0.1 represents the extent of non-compliance observed during 1970 cyclone in Andhra Pradesh and 0.0065 represents the same during 1990 cyclone in Andhra Pradesh.

as well as the adaptive capacity of the districts, characterized by a range of physical, economic, social, and demographic parameters. Using information on areas with different hazard levels in the coastal districts, the study also estimated the number of human casualties across coastal districts due to potential surge associated with cyclonic storms.

Relative rankings of Indian coastal districts based on the integrated vulnerability index indicate that districts on the east coast are relatively more vulnerable than those on the west coast. Relative rankings of the coastal districts based on predicted storm-induced casualties are similar to the rankings based on integrated vulnerability index, indicating the robustness of the findings.

The primary purpose of the relative vulnerability measures developed in this study is to provide insights to guide prioritization of adaptation strategies for specially vulnerable regions. Given that adaptation is an important policy response, this section looks a little more closely at two important aspects of adaptation, namely what to adapt to and how to adapt.

#### 4.1. Adapt to what?

As climate change may actually be experienced as a change in the frequency and/or intensity of extreme climatic events, disaster preparedness is an important component of climate-change action plans. Understanding vulnerability to present-day climate extremes such as cyclones would provide useful insights about the adaptive capacity of a region. Adaptation measures taken in anticipation of climate change can and usually should be harmonized with responses to current extreme climatic events. However, human activities are not always as well adapted to the current extreme events as one would want them to be. As argued by Burton, Kates, and White (1993), the losses suffered due to climate extremes cannot be ascribed to the events alone, because lack of appropriate human adaptation and sometimes maladaptation account for significant losses.

In this context it may be worth noting the experiences with the super-cyclone in 1999 that devastated the state of Orissa. There is general agreement that the cyclone's devastating impacts were worsened significantly by deforestation on the coast. Satellite pictures show that 2.5 km<sup>2</sup> of mangrove forest was lost every year during the 1970s. Without the protection of forests, the super-cyclone was believed to have traveled as far as 50 km inland. Mangrove forests make ideal places for conversion into ponds for shrimp farming, and India is one of the top four shrimp exporters in the world, with production growing by 15 percent a year. Orissa, a major center for the business, specializes in raising tiger prawns.

A rough estimate by the UN Food and Agriculture Organization (FAO 1999) indicates that in the past three decades, Andhra Pradesh has lost 40 percent of its mangrove forest to shrimp farming, while the corresponding losses in Orissa, Tamil Nadu, and West Bengal are 26 percent, 26 percent, and 1.25 percent respectively. It may be noted that the majority of the highly vulnerable districts according to the estimations in this study are located in these four states. An important policy lesson is to avoid these maladaptations and aim for sustainable resource-management practices.

#### 4.2. How to adapt

Coastal zone management is about making trade-offs aimed at resolving competing sectoral demands, rather than optimizing the output of a single resource. Solving such problems requires integration of

management objectives and hence there is increasing interest in integrated coastal zone management (ICZM). In terms of responding to climate change, ICZM can be seen as an essential institutional mechanism that can deal with all competing pressures on a coast, including short-, medium-, and long-term issues. Vulnerability assessment of the type addressed in this study is often described as one possible trigger for ICZM; at the same time, ICZM will increase the need for more sophisticated and detailed assessment of the implications of climate change—while accounting for other climatic and non-climatic stresses on the coastal zones. Thus, an interactive evolution of vulnerability assessment within the ICZM framework can be envisaged, progressively contributing to an improved knowledge base for decision making. In India, ICZM plans are being drawn up for more and more coastal regions. The coastal zone regulations can be cited as an early manifestation of the ICZM plans.

Though risk management is well developed in the Indian context, with early warning systems and post-disaster management systems firmly in place, use of effective mechanisms for enabling people to better manage their own catastrophe risks are still lacking. While government's role in disaster management cannot be eliminated entirely, efforts should be made to reduce the burden substantially. Once disaster assistance is institutionalized, as it is in the Indian context, then it has many of the longer-term effects of an insurance subsidy that inadvertently worsens future problems by encouraging people to increase their exposure to potential losses. For example, compensation for cyclone damage to homes can lead to construction of more houses in cyclone-prone areas. Insurance against natural disasters should have little or no government subsidy, to avoid the problems of moral hazard and adverse selection. New approaches like index-based or area-based contracts to insure against natural disasters should be attempted, and these approaches, in conjunction with developments in micro-finance, could make insurance an increasingly viable proposition for poor people to better manage risk.<sup>3</sup>

The insurer often faces high exposure because of the covariate nature of the insured risk. When a payment is due, then all those who have purchased insurance against the same risk must be paid at the same time. To hedge against this risk, the insurer can sell part of it on the international reinsurance and financial markets. Even though the global reinsurance market is well developed, its benefits are reaped almost entirely by the developed world. While the United States, the United Kingdom, and Japan account for almost 55 percent of the total reinsurance market, the developing countries in Asia, where most natural-disaster-related damage is borne, accounts for less than 8 percent of the global market. It is into this area that government should put most of its efforts, rather than into actual disaster assistance.

<sup>3.</sup> Area based (or index-based) insurance is specific to an area instead of each individual. Since buyers in a region pay the same premium and receive the same indemnity per standard unit contract (SUC), it avoids all adverse selection problems. Moreover, the insured's management decisions will not be influenced by the index contract, eliminating moral hazard. A farmer with rainfall insurance, for example, possesses the same economic incentives to produce a profitable crop as the uninsured farmer. It could be very inexpensive to administer, since there are no individual contracts to write, no on-site inspections, and no individual loss assessments. It uses only data on a single regional index, and this is based on data that is available and generally reliable. It is also easy to market—SUCs are sold rather like travelers' checks, and presentation of the certificate is sufficient to claim a payment when one is due.

#### 2006

## Acknowledgements

This study is part of a project undertaken under the EMCaB (Environmental Management Capacity Building Technical Assistance) Program of the World Bank and the Ministry of Environment and Forests, Government of India. The financial assistance received from the Environmental Economics Research Committee is gratefully acknowledged. The authors would also like to acknowledge helpful comments received from two anonymous reviewers. The usual disclaimer applies.

# References

- Ali, A. 1999. Climate change impacts and adaptation assessment in Bangladesh. Climate Research 12: 109–116.
- Atkins, J., S. Mazzi, and C. Ramlogan. 1998. A study on the vulnerability of developing and island states: A composite index. London: Commonwealth Secretariat.
- Asian Development Bank (ADB). 1994. Climate change in Asia: India country report. Manila: ADB.
- Asthana, V. 1993. Impacts of Greenhouse Induced Sea-level Rise on the Islands and Coasts of India, Project report submitted to Ministry of Environment and Forests, Government of India, Delhi: JNU.
- Brenkert, A.L. and E.L. Malone..2004. Modeling Vulnerability and Resilience to Climate Change: A Case Study of India and Indian States, *Climatic Change*, 72(1):57-102.
- Briguglio, L. 1995."Small island states and their economic vulnerabilities. World Development 23: 1,615–1,632.
- ———. 1997. Alternative economic vulnerability indices for developing countries. Report prepared for the Expert Group on Vulnerability Index, UN (DESA), 17–19 December.
- Building Materials and Technology Promotion Council (BMTPC). 1997. Vulnerability atlas of India: Earthquake, windstorm and flood hazard maps and damage risk to housing, report of Expert Group on Natural Disaster Prevention, Preparedness and Mitigation. New Delhi: BMTPC, Ministry of Urban Affairs and Employment, Government of India.
  - ——. 1998. *Techno-legal aspects of earthquake, windstorm and flood hazards and land use zoning*, report of Expert Group on Natural Disaster Prevention, Preparedness and Mitigation. New Delhi: BMPTC, Ministry of Urban Affairs and Employment, Government of India.
- Burton, I., R. W. Kates, and G. F. White. 1993. The environment as hazard. 2<sup>nd</sup> ed. New York: Guilford Press.
- Emery, K. O., and D. G. Aubrey. 1989. Tide gauges of India. Journal of Coastal Research 5(3):489-501.
- Food and Agriculture Organization (FAO). 1999. *Rural aquaculture in India*. RAP publication 1999/21. Bangkok: FAO Regional Office for Asia and Pacific.
- Government of India (GoI). 2001. Census of India 2001: Series I (India). New Delhi: Office of the Registrar General.
- Intergovernmental Panel on Climate Change (IPCC). 2001. *Climate change 2001: The scientific basis. Cambridge, UK:* Cambridge University Press.
- International Federation of the Red Cross and Red Crescent Societies (IFRC). 2001. World Disaters Report, Geneva, Switzerland: IFRC.
- Kaly, U., L. Briguglio, H. McLeod, A. Schmall, C. Pratt, and R. Pal. 1999. Environmental vulnerability index (EVI) to summarise national environmental vulnerability profiles. South Pacific Applied Geoscience Commission (SOPAC) Technical Report 275. Suva, Fiji: SOPAC.
- Krishna, P., and N. M. Bhandari. 1999. Vulnerability and risk assessment for regions prone to cyclones. Paper presented at the Special Unit for Technical Cooperation among Developing Countries Workshop on Natural Disaster Reduction—Policy Issues and Strategies, December 21–22, Structural Engineering Research Council, Chennai.
- Mahadevan, R. 1992. Impact of Sea-level Rise due to Greenhouse Effect: Statistical Analysis of the Past Tide Gauge Data along the East Coast of India, Project report submitted to Ministry of Environment and Forests, Government of India, Delhi.

- O'Brien K L, R.M. Leichenko, U. Kelkar, H. Venema, G. Aandahl, H. Tompkins, A. Javed, S. Bhadwal, S. Barg, L. Nygaard, and J. West. 2004. Mapping vulnerability to multiple stressors: climate change and globalization in India. *Global Environmental Change* 14(4):303-313.
- Palmer, T. N. and J. Raisanen 2002. Quantifying the risk of extreme seasonal precipitation events in a changing climate. *Nature* 415: 512–514.
- Shankar, D. 1998. Low-frequency variability of sea-level along the coast of India. PhD thesis, Goa University.
- Tata Energy and Resources Institute (TERI). 1996. The economic impact of a one metre sea-level rise on the Indian coastline: Method and case studies. Report submitted to Ford Foundation. New Delhi: TERI.
- Titus, J.G., R. A. Park, S. P. Leatherman, J. R. Weggel, M. S. Greene, P. W. Mausel, S. Brown, C. Gaunt, M. Trehan, and G. Yohe. 1991. Greenhouse effect and sea-level rise: The cost of holding back the sea. *Coastal Management* 19(2):171–204.
- United Nations Development Programme (UNDP). 2002. Human development report 2002. Oxford, UK: Oxford University Press.
- Wells, J. 1996. Composite vulnerability index: A preliminary report. London: Commonwealth Secretariat.
- West, J. J. and H. Dowlatabadi. 1999. Assessing economic impacts of sea-level rise. In *Climate change and risk*, ed. T. E. Downing, A. A. Olsthoorn, and R. Tol, 205–220. London: Routledge.
- West, J. J., H. Dowlatabadi, and M. J. Small. 2000. Storms, investor decisions, and the economic impacts of sea-level rise. Working paper, Center for Integrated Study of the Human Dimensions of Global Change, Carnegie Mellon University.
- Yohe, G. 1990. The cost of not holding back the sea: Toward a national sample of economic vulnerability. *Coastal Management* 18: 403–431.
- Yohe, G., J. Neumann, P. Marshall, and H. Ameden. 1996. The economic cost of greenhouse induced sea-level rise for developed property in the United States. *Climatic Change* 32(4): 387–410.