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Abstract: Illumination variations in non-atmospherically corrected high-resolution satellite (HRS) 
images acquired at different dates/times/locations pose a major challenge for large-area environ-
mental mapping and monitoring. This problem is exacerbated in cases where a classification model 
is trained only on one image (and often limited training data) but applied to other scenes without 
collecting additional samples from these new images. In this research, by focusing on caribou lichen 
mapping, we evaluated the potential of using conditional Generative Adversarial Networks 
(cGANs) for the normalization of WorldView-2 (WV2) images of one area to a source WV2 image 
of another area on which a lichen detector model was trained. In this regard, we considered an 
extreme case where the classifier was not fine-tuned on the normalized images. We tested two main 
scenarios to normalize four target WV2 images to a source 50 cm pansharpened WV2 image: (1) 
normalizing based only on the WV2 panchromatic band, and (2) normalizing based on the WV2 
panchromatic band and Sentinel-2 surface reflectance (SR) imagery. Our experiments showed that 
normalizing even based only on the WV2 panchromatic band led to a significant lichen-detection 
accuracy improvement compared to the use of original pansharpened target images. However, we 
found that conditioning the cGAN on both the WV2 panchromatic band and auxiliary information 
(in this case, Sentinel-2 SR imagery) further improved normalization and the subsequent classifica-
tion results due to adding a more invariant source of information. Our experiments showed that, 
using only the panchromatic band, F1-score values ranged from 54% to 88%, while using the fused 
panchromatic and SR, F1-score values ranged from 75% to 91%. 

Keywords: remote sensing; GANs; image normalization; deep learning; lichen mapping; environ-
mental mapping 
 

1. Introduction 
Remote sensing (RS) has been widely proven to be advantageous for various envi-

ronmental mapping tasks [1–5]. Regardless of the RS data used for mapping, there are 
several challenges that can prevent the generation of accurate maps of land cover types of 
interest. Among these challenges, one is collecting sufficient training samples for a classi-
fication model. This is particularly true for classifiers that require large amounts of train-
ing data and/or if fieldwork is required in difficult-to-access sites. This challenge has been 
intensified lately due to COVID-19 restrictions worldwide. A second challenge is that 

Citation: Jozdani, S.; Chen, D.;  

Chen, W.; Leblanc, S.G.; Lovitt, J.; 

He, L.; Fraser, R.H.; Johnson, B.A. 

Evaluating Image Normalization via 

GANs for Environmental Mapping: 

A Case Study of Lichen Mapping 

Using High-Resolution Satellite  

Imagery. Remote Sens. 2021, 13, 5035. 

https://doi.org/10.3390/rs13245035 

Academic Editor: Amr Abd-Elrah-

man 

Received: 7 October 2021 

Accepted: 6 December 2021 

Published: 11 December 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Remote Sens. 2021, 13, 5035 2 of 25 
 

 

suitable RS data for a study area may not be available; e.g., high spatial resolution (HSR) 
or cloud-free imagery. UAVs can be beneficial for overcoming both of these challenges 
due to their high flexibility (e.g., ability to quickly acquire imagery in study sites where 
other suitable RS data are not available), but planning UAV flights and processing UAV 
images over wide areas can be time and cost-prohibitive (although they are usually more 
efficient than acquiring traditional field data). A third challenge is that satellite/UAV im-
ages are subject to both spatial and temporal illumination variations (caused by variations 
in atmospheric conditions, sensor views, solar incidence angle, etc.) that may cause radi-
ometric variations in image pixel values, especially in shortwave bands (e.g., Blue). With-
out accounting for illumination variations, the performance of classification models can 
be substantially degraded in unseen/test images. The main reason for this accuracy deg-
radation is that the model learned from the distribution of the source image, which has 
now shifted in a given target image, meaning that it can no longer perform on the target 
image as well as it did on the source image on which it was trained. Such image-to-image 
variations are also found in images acquired by the same sensor unless appropriate nor-
malizations and/or atmospheric corrections are performed. 

In general, illumination variations in different scenes (including those acquired over 
the same area but different times) are a function of topography, the bidirectional reflec-
tance distribution function (BRDF), and atmospheric effects. Accounting for these varia-
bles helps to balance radiometric variations in different images, thus making them con-
sistent for different downstream tasks. In the case of raw images, one way of performing 
such corrections is through absolute radiometric correction to the surface reflectance, 
which consists of converting raw digital numbers to top-of-atmosphere (TOA) reflectance 
and then applying an atmospheric correction approach to derive ground-level surface re-
flectance. Relative radiometric correction (or normalization) is another way of harmoniz-
ing images that can be applied to cross-sensor images. Normalizing images to RS surface 
reflectance (SR) images (such as Landsat or Sentinel-2 images) [6–8] or to ground-meas-
ured SR [9] is a popular approach to harmonizing different sources of RS images. Maas 
and Rajan [6] proposed a normalization approach (called scatter-plot matching (SPM)) 
based on invariant features in the scatter plot of pixel values in the red and near-infrared 
(NIR) bands. The authors reported the successful application of their approach for nor-
malizing Landsat-7 images to Landsat-5 images and for normalizing to SR, although this 
approach only considers the red and NIR bands. Abuelgasim and Leblanc [7] developed 
a workflow to generate Leaf Area Index (LAI) products (with an emphasis on northern 
parts of Canada). In this regard, the authors employed different sources of RS imagery 
(including Landsat, AVHRR, and SPOT VGT). To normalize Landsat-7 and Landsat-5 im-
ages to AVHRR and SPOT VGT images, the authors trained a Theil–Sen regression model 
using all the common pixels in a pair of images (i.e., the reference and target images) 
through improving the efficiency of the original approach to be able to process much more 
common pixels. In a study by Macander [8], a solution was developed to normalize 2 m 
Pleiades satellite imagery to Landsat-8 SR imagery. The authors aimed to match the blue, 
green, red, and NIR bands to the same bands of a Landsat-8 SR composite (a 5 year sum-
mertime composite). For this purpose, they first masked out pixels with highly dynamic 
reflectance. Then, a linear regression was established between the Landsat-8 composite 
and the aggregated 30 m Pleiades satellite imagery. Finally, the trained linear model was 
applied directly to the 2 m Pleiades satellite imagery to obtain a high-resolution SR prod-
uct. Rather than calibrating images based on an SR image, Staben, et al. [9] calibrated 
WorldView-2 (WV2) images to ground SR measurements. For this, the authors used a 
quadratic equation to convert TOA spectral radiance in WV2 imagery to average field 
spectra for different target features (e.g., grass, water, sand, etc.). The experiments in that 
study showed that there was an acceptable level of discrepancies between the ground-
truth averaged field spectra and the calibrated bands of the WV2 image, with the NIR 
band resulting in the largest variance among the other bands. 
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Although these normalization techniques have proven to be useful for making dif-
ferent non-atmospherically corrected images consistent with atmospherically corrected 
images, they should be done separately for each image (mainly through non-linear regres-
sion modeling). Such approaches are advantageous to harmonize images that have differ-
ent characteristics (e.g., different acquisition frequencies). However, due to surface illu-
mination variations (depending on sun angle) and varying atmospheric conditions, this 
does not guarantee seamless scene-to-scene spectral consistency [8]. 

Another way of harmonizing images is based on classic approaches such as histo-
gram matching (HM) [10]. HM is an efficient, context-unaware technique that is widely 
used to transform the histogram of a given image to match a specific histogram (e.g., the 
histogram of another image) [10]. Although this approach is efficient and easy to apply, it 
does not take into account contextual and textural information. Moreover, HM-based 
methods do not result in reasonable normalizations when the histogram of the target im-
age is very different from that of the source image [11]. All the approaches described 
above intuitively aim to adapt a source domain to a target domain, which in the literature 
is known as the adaptation of data distributions, a subfield of Domain Adaptation (DA) 
[12]. The emergence of Deep Learning (DL) has opened new insights into how DA can 
significantly improve the performance of models on target images. DA has several vari-
ants, but they can be mainly grouped into two classes: Supervised DA (SDA) and Unsu-
pervised DA (UDA) [13]. DL-based DA approaches have also been successfully employed 
in RS applications, mainly for urban mapping [14]. 

In this study, the main focus is not on normalizing images to surface reflectance, but 
rather on harmonizing different images regardless of their preprocessing level (e.g., radi-
ometrically corrected, TOA reflectance, surface reflectance), which is a case of UDA. Con-
sidering this general-purpose direction, orthogonal to the majority of research in the con-
text of environmental RS, we investigated an extreme case that has not been well studied 
in environmental RS mapping. The central question addressed in this study is that, if we 
assume that a classifier (either a DL model or a conventional one, or either a pixel- or 
object based) has already been trained on a single HRS image of one area (in our case, 
WV2 imagery), and if we do not have access to any of the target images of other areas 
during model training, to what degree is it possible to apply the same model, without any 
further training or collections of new samples whatsoever, to unseen target images and 
still obtain reasonable accuracy? This is a special, extreme case of UDA (or as we call it in 
this paper, image normalization). In recent years, Generative Adversarial Networks 
(GANs) [15] have been used for several applications (e.g., DA, super-resolution, image 
fusion, semantic segmentation, etc.) in the context of RS [16–18]. Given the potential of 
GANs in different vision tasks, cGANs based on Pix2Pix [19] were adopted as the base of 
image normalization in this study. 

2. Methodology 
The backbone of the framework applied in this research is based on cGANs [20]. 

More precisely, the framework revolves around supervised image-to-image translation. 
In this regard, the goal is to normalize target images based on a source image (on which 
the classifier was trained). The methodology aimed to normalize target images using a 
cGAN to a source image to allow for the more accurate mapping of target images without 
collecting additional training data. There are some considerations when it comes to ap-
plying a cGAN for image normalization. First, the source image selected should contain 
most of the land cover types that are spectrally similar to the land covers of interest that 
could appear in the target images. Second, the classification model should be trained well 
on the source image given the fact that sufficient training data for target images may not 
be available. Third, none of the target images had been seen or used (even in an unsuper-
vised manner) in any part of model training process; that is, no prior knowledge on target 
images was available, except that they could be different from the source image in terms 
of illumination conditions. These considerations led to an extreme situation which could 
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also be a common problem in real-world mapping tasks, as collecting training samples is 
expensive, fine-tuning classifiers may not be effective, processing multiple data sets syn-
chronously may not be computationally feasible, context-unaware data augmentation 
techniques may not be effective, etc. 

cGAN Framework 
In the field of RS, image-to-image translation has several applications. For example, 

one interesting application is to synthesize optical RS images (e.g., RGB images) based on 
non-optical RS data (e.g., SAR images) [21]. Another application of image translation in 
RS is image colorization, in which the goal is to colorize gray-scale images [22]. Image 
colorization can be performed using different solutions such as GANs that aim to approx-
imate a distribution for the outputs that is similar to the distribution of the training data. 
This important feature allows GANs to generate synthetic images that are more similar—
also in terms of color—to real images. In the case of RS images, it is generally not sufficient 
to have images that are colorful; in other words, we need images in which the different 
types of land cover are assigned semantically realistic colors, although visually assessing 
this beyond the RGB bands is difficult. In addition to this challenge, in some mapping 
tasks (such as caribou lichen mapping) using RS data, spectral information could typically 
be more important than geometric information, which is generally more crucial in natural 
images. Therefore, if a classifier already trained on real images is applied to synthesized 
RS images, it would have difficulty detecting land cover of interest in cases where color 
information is not consistent with real images. 

Given the aforementioned challenges, we adopted Pix2Pix [19] with some modifica-
tions as the backbone for cGAN in this study. Before elaborating on Pix2Pix, it is required 
to briefly review vanilla GANs. GANs adversarially train a generative model (aiming to 
approximate real data distribution) and a discriminative model (aiming to distinguish a 
real sample from a fake one generated by the generative model) [15]. Since these two mod-
els are optimized simultaneously, they are trained in a two-player minmax game manner, 
in which the goal is to minimize the loss of the generative model and maximize the loss 
of the discriminative model. Since vanilla GANs restrict the user from controlling the gen-
erator (and the images generated accordingly), their applications are limited. To expand 
the range of their applications, conditional GANs (cGANs) were introduced that condi-
tion both the generator and discriminator based on an additional source of information 
(e.g., class labels, another image source, etc.). Given this, the objective function of cGANs 
can be defined as Equation (1) [20]. 

 

( ) ( ) ( )( )( )~, 1 ,log
data data zx, y~ p (x,y) x p (x), z~ p (z) xx, y x, z     = + −    log     cGAN D G D D GL    (1)

where the goal is to map the random noise vector z to target y given x using a discrimina-
tor D(.) and a generator G(.) trained in an adversarial manner. 

The use of Equation (1) alone may not result in fine-grained translated images. To 
remedy this, Pix2Pix uses an L1 loss (Equation (2)) besides Equation (1) in its objective 
function to improve the spatial fidelity of the synthesized images. 

1
(( ) )G G = − L

data zx ,y ~ p (x,y),z ~ p (z)L1 y x, z  (2)

where y is the target, G(.) is the generator, and ‖ . ‖ଵ is the L1 norm calculated based on 
the target and the output generated by the generator. The reason for using the L1 norm 
rather than L2 norm is that L1 helps to generate less blurry images [23]. Combining the 
adversarial loss and L1 loss, we can define the objective function of Pix2Pix as Equation 
(3). 

1= λ+L L LPix2Pix cGAN L1  (3)
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To improve the training of GANs (i.e., mitigating the vanishing gradients problem), 
we used conditional Least Squares GANs (cLSGANs) [24] (Equation (4)). In contrast to the 
vanilla GANs, whose discriminator is a classifier with the sigmoid cross entropy loss func-
tion, cLSGAN does not apply a sigmoid function, and thus treats the output as a regres-
sion and minimizes the least squares of errors in the objective function. 

( ) ( )

( ) ( )

2 2
~

2
~

1 ,

.

1 ( ) 1 ( , ( ))
2 2
1 ( ( )) 1
2
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= −
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L
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data data z

data z

x, y~p (x,y) x p (x), z~p (z)

x p (x), z~p (z)

x,y x x,z

x, z

 



     

   

 (4)

In addition to the use of the original loss function of Pix2Pix, we also tested whether 
adding a perceptual loss can provide better color consistency in the normalization process. 
For this purpose, we used a pretrained VGG19 trained on the ImageNet dataset. Since this 
model takes in only RGB images, we replaced the input layer and then fine-tuned it on an 
urban classification task using WorldView-2 images to better adapt it to our applica-
tion/data in this study [25]. The perceptual loss was used to calculate the Euclidean dis-
tance between the VGG19-derived feature maps of the generated and real images (Equa-
tion (5)). 

( ) ( )
2

2
( ,Perceptual G = −  i, j i, jL

data zx,y~p (x,y),z~p (z) Φ y Φ x,z  (5)

where Φi,j is the j-th convolution (after activation) before the i-th maxpooling layer of the 
VGG16. In this study, we calculated the perceptual loss based on the feature maps of the 
fourth convolution before the fifth maxpooling layer. Besides the perceptual loss, we 
added the total variation (TV) loss (Equation (6)), which is the is the sum of the absolute 
differences for neighboring pixel-values in the generated image, to reduce noise (such as 
chessboard-like artifacts) in the generated images. 

( ) ( )
, 2 2

( ) ( ) ( ) ( ) ,TV

H W

G G G G= − + − 
  i, j+1 i, j i+1, j i, j

i=1, j=1

L x,z x,z x,z x,z  (6)

where H and W are the height and width of the generated image. 
As a result, the final loss function of the modified Pix2Pix (Pix2Pix+) in this study can 

be expressed as Equation (7). 

1 2 3= , λ λ λ+ + +L L L L LPix2Pix+ cLSGAN L1 Perceptual TV  (7)

where λ are the weights of the image space, perceptual, and TV losses, which were em-
pirically chosen to be 100, 1, and 10, respectively. 

As with the original Pix2Pix, we used a patch-wise discriminator to model a high-
frequency structure along with a low-frequency structure. For the generator, we used a 
U-Net model pretrained on the same urban classification task that the feature extractor 
VGG19 was fine-tuned on. The architecture of the generator is presented in Figure 1. The 
input size of images was chosen to be 256 × 256 pixels. A kernel size of 4 × 4 with a stride 
of 2 in the convolutional layers of both the encoding and decoding layers was employed. 
In the encoding layers, LeakyReLU activation with a slope of 0.2 was used, whereas in the 
decoding layers, ReLU activation was used. An Adam solver with the momentum param-
eters β1 = 0.5 and β1 = 0.999 and a learning rate of 0.0002 was used to train the cGANs for 
300 epochs. 
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Figure 1. Architecture of the cGANs deployed in this study. 

3. Experimental Design 
To evaluate the potential of image normalization based on cGANs, we conducted an 

experimental test for caribou lichen cover mapping. Caribou are known as ecologically 
important animals, but due to multiple factors ranging from climate change to hunting 
and disease, global caribou populations have been declining in recent decades, and they 
are now on the International Union for the Conservation of Nature’s (IUCN) red list of 
threatened species [26]. Land cover change in caribou habitats is a major factor affecting 
resource availabilities, and it is driven by both indirect impacts of anthropogenic activities 
(e.g., climate change causing vegetation changes) as well as direct impacts (e.g., deforesta-
tion or forest degradation) [27]. When land cover changes occur, it may cause caribou 
herds to change their distributions and migration patterns when foraging for food [28]. 
Thus, for caribou conservation efforts, it is important to monitor and analyze the resources 
on which caribou are highly dependent, such as lichen, which is the main source of winter 
food of caribou [29,30]. Caribou lichens are generally bright-colored and could be chal-
lenging to detect in the case of illumination variations between a source image and target 
images, especially where there are other non-lichen bright features. To evaluate cGANs 
for image normalization for the lichen mapping task, we used WV2 images with a spatial 
resolution of 2 m for the multi-spectral bands and of 50 cm for the panchromatic band. 
Since WV2 images were subject to different atmospheric variations, it would also be rea-
sonable to consider other sources of data/images that are less affected by atmospheric 
changes and lighting variations accordingly. A helpful option is to use atmospherically 
corrected images as auxiliary information to help cGANs to learn more stable features 
when normalizing target images. As explained in the next section, we also tested the po-
tential of using both WV2 images and Sentinel-2 surface reflectance (SR) images for nor-
malization. 
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3.1. Dataset 
Five radiometrically corrected WV2 scenes with eight spectral bands from different 

parts of Canada were chosen for this study (Figure 2). The radiometric correction on raw 
data was performed by the vendor to mitigate image artifacts (appearing as streaks and 
banding in the raw images) through including a dark offset subtraction and a non-uni-
formity correction including detector-to-detector relative gain. The Manic-5 image covers 
a 405 km2 area located south of the Manicouagan Reservoir, Québec, Canada around the 
Manic-5 dam. This area consists of boreal forest (black spruce dominated) and open lichen 
woodlands, or forests with lichen. There are many waterbodies and water courses. The 
Fire Lake image covers a 294 km2 area located around the Fire Lake Iron Mine in Québec, 
Canada. This area is comprised of dense boreal forests (black spruce dominated) with a 
great proportion of open lichen woodlands and/or forests with lichen. The Labrador im-
age was acquired over 273 km2 located east of Labrador City, Labrador, Canada. This area 
is comprised of dense boreal forests (black spruce dominated) with open lichen wood-
lands and/or forests with lichen. There are also a significant number of water features 
(bodies and courses) in this area. The Churchill Falls image covers a 397 km2 area located 
west of Churchill Falls, Labrador, Canada. This area is comprised of dense boreal forests 
(black spruce dominated), open lichen woodlands and/or forests with lichen. The Nakina 
image covers a 261 km2 area located east of the township of Nakina, Ontario, Canada. This 
area is comprised of dense boreal forests with very sparse, small lichen patches. Like the 
other images, this image covers several water bodies. 

 
Figure 2. Images used in this research. Manic-5 image is the source image, and other four images are target images. 
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We chose the image acquired over Manic-5 area as our source image from which the 
training data were collected and used to train the models on this study. The reason for 
choosing this image as our source image was that we conducted fieldwork within an area 
covered by this image. The other four images were used for testing the efficacy of the 
pipeline applied. We attempted to choose target images from our database that were dif-
ferent from our source image in terms of illumination as much as possible. In all the im-
ages except the Labrador image, there were clouds or haze that caused a shift in the dis-
tribution of data. Of the four target images, the Nakina image had the least lichen cover. 
The Fire Lake image was used as a complementary target image to visually evaluate some 
of the important sources of errors that were observed mainly in this image. Along with 
WV2 images, we also used Sentinel-2 SR images in this paper. We used the Sentinel-2 
Level-2 A product, which is geometrically and atmospherically corrected from the TOA 
product through an atmospheric correction using a set of look-up tables based on libRad-
tran [31]. We chose six bands (B2-5, B8, B11) of 10 m Sentinel-2 SR cloud-free median com-
posites (within the time periods close to the acquisition years of the WV2 images) and 
downloaded them from Google Earth Engine. 

3.2. Training and Test Data 
To train the cGANs, we used 5564 image patches with a size of 256 × 256 pixels. No 

specific preprocessing was performed on the images before inputting them into the mod-
els. In order to test the framework applied in this study, we clipped some sample parts of 
the Labrador, Churchill Falls, and Nakina images. A total of 14 regions in these three tar-
get images were clipped for testing purposes. From each of these 14 test image clips, 
through visual interpretation (with assistance from experts familiar with the areas), we 
randomly sampled at least 500 pixels (Table 1), given the extent of each clip. We attempted 
to equalize the number of lichen and background samples. Overall, 14,074 test pixels were 
collected from these three target images. 

Table 1. Number of samples collected from each region of the Labrador, Churchill Falls, and Nakina 
images. 

Image Region 1 Region 2 Region 3 Region 4 Region 5 
Labrador 1020 808 1671 1015 1769 

Churchill Falls 1284 740 899 1078 1063 
Nakina 799 842 515 571 - 

3.3. Normalization Scenarios 
Different normalization scenarios were considered in this study based on either WV2 

images or a combination of WV2 and auxiliary images. In fact, since WV2 images alone 
may not be sufficient to reach high-fidelity normalized target images (and accurate lichen 
mapping accordingly), we also used an auxiliary RS image, namely Sentinel-2 SR imagery, 
in this study. Given this, the goal was to normalize target WV2 images to a source eight-
band pansharpened image with a spatial resolution of 50 cm. This means that the output 
of the normalization methods should be 50 cm to correspond to the source image. Using 
these two data sets, we considered four scenarios (Figure 3) for normalization as follows: 
1. Normalization based on the 2 m resolution WV2 multi-spectral bands (resampled to 

50 cm); 
2. Normalization based on the WV2 panchromatic band concatenated/stacked with the 

2 m multi-spectral bands (resampled to 50 cm); 
3. Normalization based on the WV2 panchromatic band alone; 
4. Normalization based on the WV2 panchromatic band concatenated/stacked with the 

Sentinel-2 SR imagery (resampled to 50 cm). 
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The scenarios 1, 3, and 4 can be considered as a special case of pan-sharpening where 
the spatial information comes from a target image but the spectral information comes 
from the source image. We performed two steps of experiments to evaluate the quality of 
image normalization using these scenarios. In the first step, we ruled out the scenarios 
that did not lead to realistic-looking results. In the second step, we used the approaches 
found practical in the first step to perform the main comprehensive quantitative tests on 
different target images. 

 
Figure 3. Four scenarios experimented to normalize WV2 imagery for caribou lichen mapping. 

3.3.1. Scenario 1: Normalization Based on 2 m Multi-Spectral Bands (Resampled to 50 
cm) 

One way of normalizing a target image to a source image is to follow a pseudo-super-
resolution approach, in which the multi-spectral bands (in the case of WV2, with a spatial 
resolution of 2 m, which must be resampled to 50 cm to be processable by the model) are 
used as input to the cGAN. However, the difference here is that the goal now is to generate 
not only a higher-resolution image (with a spatial resolution of 50 cm), but also an image 
that has a similar spectral distribution to that of the source image. It should be noted that 
all the resampling to 50 cm was performed using a bi-linear technique before training the 
GANs. 

3.3.2. Scenario 2: Normalization Based on the Panchromatic Band Concatenated/Stacked 
with 2 m Multi-Spectral Bands (Resampled to 50 cm) 

The second way is to improve the spatial fidelity of the generated normalized image 
by incorporating higher-resolution information into the model without the use of a spe-
cialized super-resolution model. One such piece of information could be the panchromatic 
band, which has a much broader bandwidth than the individual multi-spectral or 
pansharpened data. In addition to its higher spatial resolution information, it can be hy-
pothesized that this band alone has less variance than the multi-spectral bands combined 
under different atmospheric conditions. When adding the panchromatic band to the pro-
cess, the model would learn high-resolution spatial information from the panchromatic 
band, and the spectral information from the multi-spectral bands. This scenario can be 
considered as a special type of pansharpening, except that in this case, the goal is to 
pansharpen a target image so that it not only has a higher spatial resolution, but also its 
spectral distribution is similar to that of the source image. 

3.3.3. Scenario 3: Normalizing Based Only on the Panchromatic Band 
The additional variance of multi-spectral bands among different scenes could de-

grade the performance of normalization in the second scenario. Since a panchromatic 
band is a high-resolution squeezed representation of the visible multi-spectral bands, it 
could also be tempting to experiment with the potential of using only this band without 
including the corresponding multi-spectral bands (to reduce the unwanted variance 
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among different scenes) to analyze if normalization can also be properly conducted based 
only on this single band. 

3.3.4. Scenario 4: Normalization Based on the Panchromatic Band Concatenated/Stacked 
with the Sentinel-2 Surface Reflectance Imagery (Resampled to 50 cm) 

Theoretically, not including multi-spectral information in the third scenario has some 
downsides. For example, the model may not be able to learn sufficient features from the 
panchromatic band. On the other hand, the main shortcoming of the first and second sce-
narios is that the multi-spectral information can introduce higher spectral variance under 
different atmospheric conditions than the panchromatic band alone can. In this respect, 
based on the aforementioned factors, another way of approaching this problem is to use 
RS products that are atmospherically corrected. These can be SR products such as Senti-
nel-2 SR imagery. Despite having a much coarser resolution, it is hypothesized that com-
bining the panchromatic band of the test image with the Sentinel-2 SR imagery can further 
improve normalization results by constraining the model to be less affected by abrupt 
atmosphere-driven changes in the panchromatic image. In this regard, the high-resolution 
information comes from the panchromatic band of the test image, and some invariant 
high-level spectral information comes from the corresponding Sentinel-2 SR image. To use 
SR imagery with the corresponding WV2 imagery, we first resampled the SR imagery to 
50 cm using the bilinear technique and then co-registered the SR imagery to the WV2 us-
ing the AROSICS tool [32]. One of the main challenges in this scenario was the presence 
of clouds in the source image. There were two main problems in this respect. First, since 
we also used cloud-free Sentinel-2 imagery, the corresponding WV2 clips should also be 
cloud and haze-free as much as possible to prevent data conflict. The second problem was 
that if we only used cloud-free areas, the model did not learn cloud features (which could 
be spectrally similar to bright lichen cover) that might also be present in target images. 
Given these two problems, we also included a few cloud- and haze-contaminated areas. 

3.4. Comparison of cGANs with Other Normalization Methods 
For comparison, we used histogram matching (HM), the linear Monge–Kantorovitch 

(LMK) technique [33], and pixel-wise normalization using the XGBoost model. HM is a 
lightweight approach for normalizing a pair of images with different lighting conditions. 
The main goal of HM is to match the histogram of a given (test) image to that of a reference 
(source) image to make the two images similar to each other in terms of lighting condi-
tions, so subsequent image processing analyses are not negatively affected by lighting 
variations. More technically, HM modifies the cumulative distribution function of a (test) 
image based on that of a reference image. LMK is a linear color transferring approach that 
can also be used for the normalization of a pair of images. The objective of LMK is to 
minimize color displacement through Monge’s optimal transportation problem. This min-
imization has a closed form, unique solution (Equation (8)) that can be derived using the 
covariance matrices of the reference and a given (target) image. 

1 1 1 1 1
2 2 2 2 2( )u u v u uT − −= Σ Σ Σ Σ Σ  (8)

where uΣ and vΣ are the covariance matrix of the target and reference images, respec-
tively. The third approach we adopted for comparison was a conventional regression 
modeling approach using the extreme gradient boosting (XGBoost) algorithm, which is a 
more efficient version of gradient boosting machines. For this model, the number of trees, 
maximum depth of the model, and gamma were set using a random grid-search approach. 

3.5. Lichen Detector Model 
To detect lichen cover, we used the same model presented in [34], which is a semi-

supervised learning (SSL) approach based on a U-Net++ model [35]. To train this model, 
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we used a single UAV-derived lichen map (generated with a DL-GEOBIA approach 
[25,36]). From the WV2 image corresponding to this map, we then extracted 52 non-over-
lapping 64-by-64 image patches. A total of 37 image patches were used for training and 
the rest for validation. To improve the training process, we extracted 75% overlapping 
image patches from neighboring training image patches as a form of data augmentation. 
As described in [34], we did not apply any other type of training-time data augmentation 
for two main reasons: (1) to evaluate the pure performance of the spectral transferring 
(i.e., normalization) without being affected by the lichen detector generalization tricks; 
and (2) to hold the constraint regarding being unaware of the amount of illumination var-
iations in target images. As reported in [34], although the lichen detector had an overall 
accuracy of >85%, it failed to properly distinguish lichens from clouds (which could be 
spectrally similar to bright lichens) as the training data did not contain any cloud samples. 
Rather than including cloud data in the training set to improve the performance of the 
lichen detector, we used a separate cloud detector model. The use of a separate model for 
cloud detection helped us to better analyze the results; that is, since clouds were abundant 
over the source image, the spectral similarities of bright lichens and clouds may cause 
lichen patches to take on the spectral characteristics of clouds in the normalized images. 
This issue can occur if the cGAN fails to distinguish clouds and lichens from each other 
properly. This problem can be more exacerbated in HM techniques as they are context 
unaware. Given these two factors, using a separate cloud detector would better evaluate 
the fidelity of the normalized images. To train the cloud detector, we extracted 280 image 
patches of 64 × 64 pixels containing clouds. For the background class, we used the data 
used to train the lichen detector [34]. We used 60% of the data for training, 20% for vali-
dation, and the remaining 20% for testing. The cloud detector model had the same archi-
tecture as the lichen detector model with the same training configurations. 

4. Results 
4.1. Experiment 1: Which Scenarios to Proceed with? 

Before the main experiment, we needed to rule out the scenarios that were not prac-
tical for normalizing the target images to the source image. For this, we first conducted a 
small-scale, preliminary test based on the Pix2Pix approach to choose the most accurate 
normalization scenarios for the main experiments. In Figure 4a, an image sample clipped 
from the Labrador pansharpened scene was used to test the four scenarios. In Figure 4b, 
the normalization result using only the multi-spectral 2 m WV2 bands can be seen. Alt-
hough the generator models of super-resolution approaches are often different from that 
of the cGANs applied in this study, we did not use another framework as we aimed to 
first make sure that the spectral fidelity at least visually would be acceptable. Aside from 
the fact that the resulting normalized image did not contain as much detailed spatial in-
formation as its pansharpened counterpart (Figure 4a), it was not spectrally similar to the 
source image either. 
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Figure 4. Normalizing a test clip of the Labrador target image based on the source WV2 image: (a) 
original pansharpened Labrador image clip, (b) normalization with 2 m WV2 test image, (c) nor-
malization with the combined 2 m multi-spectral WV2 image and the panchromatic band, (d) nor-
malization with only the panchromatic band, (e) normalization with the combined panchromatic 
band the Sentinel-2 SR image. 

The second scenario was to include the panchromatic band. This was partly equiva-
lent to a pan-sharpening problem with spectral information coming from a different 
source. According to Figure 4c, this resulted in a higher spatial fidelity. However, this was 
not yet spectrally very comparable to the source image. Although the inclusion of the pan-
chromatic band led to a better result in terms of high-resolution information, it is ques-
tionable if multi-spectral bands played any important role in the normalization process. 
More technically, the variations of multi-spectral information could actually be a source 
of confusion for the model in this application. Therefore, the model may have learned 
more from variable multi-spectral bands rather than the less variant panchromatic band. 

In the third scenario, we only used the panchromatic band alone to analyze the re-
sulting normalized image (Figure 4d). Visually, this led to a much better result that was 
more similar to the source image. 
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Although the exclusion of the 2 m multi-spectral bands improved the quality of the 
resulting synthesized image, this does not necessarily mean that multi-spectral infor-
mation is not important. In fact, the 2 m multi-spectral bands of WV2 could not be con-
sistent in different scenes due to atmospheric and luminance variations. Instead, in the 
fourth scenario, training the cGAN using the stacked Sentinel-2 SR image and panchro-
matic band of the image clip led to a more accurate spectral translation (Figure 4e). 

To more objectively understand the differences between these four scenarios, we ap-
plied the lichen detector model to the normalized image generated based on each of the 
scenarios. It can be seen that the lichen map generated based on the scenario-1 normalized 
image wrongly classified many bare soil and impervious pixels as lichen (Figure 5b). As 
shown in Figure 5c, the inclusion of the panchromatic band to the multi-spectral WV2 
bands resulted in much fewer incorrect lichen detections, indicating the importance of the 
panchromatic band for normalization. However, this was at the expense of missing many 
true lichen pixels. As discussed above, this indicates that non-atmospherically corrected 
multi-spectral bands may not have a critical role in accurate normalizations compared to 
the panchromatic band. The classification of the normalized image derived from the third 
scenario (i.e., using only the panchromatic band) (Figure 5d) confirms both the importance 
of the panchromatic band and the negative impact of the non-atmospherically corrected 
multispectral bands (resulting from the combined variance of the bands) for image nor-
malizations, which led to much more true lichen detections compared to the second sce-
nario. Finally, pairing the SR image with the panchromatic band (i.e., scenario 4) further 
improved true lichen detections, although it also slightly increased the false positive rate 
(Figure 5e). 
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Figure 5. Lichen maps of (a) the test clip of the Labrador target image (Figure 4a) generated by the 
lichen detector model based on the normalized images derived from (b) scenario 1, (c) scenario 2, 
(d) scenario 3, and (e) scenario 4. 

Given the experiments above, we decided to proceed to the main experiment with 
only the third and fourth scenarios (Appendix A), as they were found to be more effective 
than the other two scenarios. In order to simplify referring to the models trained based on 
these two scenarios, we hereafter call the Pix2Pix model trained with the panchromatic 
image as “P_model”, and the model trained with the panchromatic WV2 band stacked 
with the SR images as “PSR_model” (and the model trained based on Pix2Pix+ 
“PSR_model+”). 

4.2. Experiment 2: Testing on Four WV2 Target Images 
Accuracy assessment of the lichen detector on the source image based on 5484 points 

(2742 lichen pixels and 2742 background pixels) resulted in an overall accuracy of 89.31% 
and F1-score of 90.12%. In Figure 6, two representative results of detecting lichens using 
the lichen detector model in the three normalized target image scenes are demonstrated 
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(more classification maps can be seen in Appendix B and in Supplementary Material). As 
can be seen, in almost all the image clips, most of the lichen pixels (shown in yellow) were 
detected in the normalized images generated by both the P_model and PSR_model. Upon 
visual inspection, we noticed that the lichen model detected more true lichen pixels in the 
normalized images generated by the PSR_model. In the Labrador test clips, the difference 
between the normalized images from the P_model and PSR_model was less accentuated 
as both resulted in visually comparable lichen detections. This was also confirmed quan-
titatively as shown in Table 2, where the F1-score values for both the mapped normalized 
image groups are very close. In this regard, the F1-score values of the mapped normalized 
Labrador clips generated by the PSR_model ranged from ~89% to ~92%. For the Labrador 
clips generated by the P_model, the accuracies ranged from ~83% to ~91%. 

 
Figure 6. Two samples of lichen classification maps generated for each test area using the PSR_model and P_model. 

Table 2. F1-score values of the normalization approaches for different image clips (Region 1,…, Region 5) of the test images 
experimented in this study. Note 1: R1, …, R5 in the table indicate Region 1, …, Region 5. Note 2: Values highlighted with 
red show the highest overall F1-score values achieved for the three target images.  

Approach Image R1 R2 R3 R4 R5 Overall 

PSR_model 
Labrador 91.84 89.57 91.89 88.80 91.27 90.91 

Churchill Falls 88.43 95.76 95.73 89.79 78.24 88.95 
Nakina 78.83 71.31 73.66 78.63 - 75.49 

P_model 
Labrador 83.27 84.28 89.35 87.65 90.77 87.84 

Churchill Falls 90.21 87.62 83.06 77.79 69.52 81.58 
Nakina 61.66 35.15 60.35 63.67 - 53.65 

PSR_model+ 
Labrador 93.40 89.17 81.61 89.54 90.91 88.40 

Churchill Falls 86.16 98.19 97.75 90.12 79.22 89.36 
Nakina 88.06 63.06 69.12 76.59 - 74.36 

HM 
Labrador 74.36 67.95 88.48 82.48 77.89 79.60 

Churchill Falls 86.68 85.04 71.74 82.56 83.3 82.20 
Nakina 88.4 53.63 78.59 52.02 - 68.19 

Labrador 76.70 64.01 84.50 79.73 74.43 77.00 
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LMK 
Churchill Falls 57.82 83.85 68.22 88.70 69.51 72.50 

Nakina 94.44 76.77 38.75 73.16 - 74.01 

XGBoost 
Labrador 80.33 71.71 51.56 74.53 80.91 70.80 

Churchill Falls 65.61 58.99 62.62 64.60 61.13 62.96 
Nakina 74.57 31.88 40.24 53.78 - 50.55 

For the Churchill Falls image clips, the lichen maps generated based on the 
PSR_model normalized images were again more accurate than those based on the 
P_model. Although the accuracies for both the image groups were high, there was a more 
significant accuracy gap between the classification maps based on the normalized images 
generated by the PSR_model and P_model. The accuracies for the classification maps gen-
erated using the normalized images derived from the PSR_model ranged from ~78% to 
~96%. On the other hand, the lichen-mapping accuracies for the normalized image clips 
generated by the P_model ranged from ~70%–~90%. In the Churchill Falls scene, the least 
accurate classification map for both the normalized image groups was produced for the 
Region-5 clip. The main reason for this accuracy degradation was the increase in the false-
positive rate. This problem was more pronounced in the P_model normalized image clip 
as it struggled with correctly distinguishing some soil pixels from lichen pixels. However, 
the positive side of the classification maps for both the normalized image groups in this 
image was that almost all the road pixels spectrally similar to lichens were correctly clas-
sified as the background class. 

The most difficult case of lichen detection in the normalized images was in the image 
clips of the Nakina scene. The Nakina scene had much less lichen coverage than the other 
two image scenes. The land cover types were, however, almost the same as the other test 
scenes and the source image. In contrast to the classification maps generated for the image 
clips of the Labrador and Churchill Falls scenes, the classification accuracies of the lichen 
maps generated based on the image clips normalized by the PSR_model were much lower 
and ranged from ~71% to ~79%. This was significantly exacerbated in the classification 
maps generated based on the image clips normalized by the P_model, as the accuracies 
ranged from ~35% to ~64%. The main problem for both the cases was that many true lichen 
pixels were misclassified as the background class by the lichen detector. The main factor 
that can be ascribed to this issue is that in the source image on which the lichen detector 
and the GAN approaches were trained, there were mostly dense lichen patches. In con-
trast, the Nakina image mainly covered sparse and small lichen patches. Due to this, the 
models faced a challenging situation that was not found in the source image (and the other 
target images), causing less accurate lichen detections in this image. For the Labrador im-
age clips, the classification maps generated based on the HM images had the worst accu-
racies. In contrast, the maps generated based on the normalized Nakina clips were more 
accurate than the P_model, while the maps of the HM Churchill Falls clips were as accu-
rate as the P-model. Figure 7 shows sample normalized image clips generated by the dif-
ferent approaches. Visually, the normalized images generated by the PSR_model almost 
looked more similar to the source image than those of the other approaches. In fact, the 
spectral fidelity of different land cover types in PSR_model normalized images appeared 
consistent with the source image. Compared to the other normalization approaches, the 
normalized images derived from the PSR_model visually looked more stable in different 
regions and images. Although the P_model-normalized images were even visually infe-
rior to the PSR_model-normalized images, they were still visually more acceptable than 
the HM, LMK, and XGBoost normalized images. 
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Figure 7. Sample normalized image clips of the Labrador, Churchill Falls, and Nakina images generated by different ap-
proaches. 

In general, the normalized images generated by the PSR_model led to more lichen 
detections compared to the P_model. In fact, detected lichen patches in the PSR_model 
normalized images were denser and better matched the true lichen patches (Figure 6 and 
Appendix B). This shows the better reliability of the PSR_model in generating more con-
sistent normalized images compared to the P_model. The HM and LMK normalized im-
ages were also less visually appealing due to spectral distortions, which was predictable 
as they are unsupervised approaches that do not consider the context of the normalization 
(i.e., color transferring). In the regression-based normalized images (XGBoost), we visu-
ally observed two main problems. First, there were some parts of the images that were 
grayish and not representative of the underlying land cover (e.g., trees). This is not sur-
prising because color transferring (such as normalization) based on minimizing pixel-
space metrics (e.g., mean absolute error or mean squared error between the true normal-
ized pixel and the predicted one) has been shown to result in grayish pixels. This problem 
is much less likely in GANs as the adversarial loss can penalize grayish images (because 
they look less realistic during the optimization) [15,19]. The second problem with the re-
gression-based normalized images was that some of the images did look more like the 
original target image than the source image. In other words, color transferring was not 
really as adequately aggressive as the GAN-based normalization approaches in this study. 

Comparing the PSR_model with PSR_model+, we observed that the results were 
comparable to a large degree. According to Table 2, accuracy gaps between the overall 
accuracies of these two models were within ±2%. Given this, it can be concluded that add-
ing the perceptual and TV losses did not result in any tangible improvement in the lichen 
detection accuracy. As presented in Table 2, the overall F1-score values of the lichen maps 
generated based on the normalized Labrador, Churchill Falls, and Nakina image clips by 
the PSR_model were 90.91%, 88.95%, and 75.49%, respectively. On the other hand, the 
lichen maps of these image clips normalized by the P_model were 87.84%, 81.58%, and 
53.65%, respectively. 

These results would not be sensible without comparing them with the lichen maps 
generated based on the original pansharpened image clips of the three target scenes. In 
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this regard, we first pansharpened the target image clips and then applied the lichen de-
tector model to them. Our experiments showed that the lichen detector failed to detect 
even a single lichen pixel correctly on the original pansharpened 14 image clips. This is 
indicative of the fact that the lichen detector model is a local model that only learns from 
the distribution of the source image, despite being trained on a limited training set. Such 
results are also of importance as they show that even DL models that are known as gen-
eralizable models may significantly fail to work well on test images if no powerful gener-
alization approach is employed. Although for some image clips (especially Nakina image 
clips), the accuracies of the lichen maps generated based on the normalized image clips 
were low, it can be argued that those accuracies were still much higher than the ones that 
resulted from applying the lichen detector to the original pansharpened image clips. 

4.3. The Impact of Other Normalization Methods 
Although the overall accuracies of the HM and LMK normalized images were lower 

than the GANs, they performed better than XGBoost and even the cGANs in some cases 
(e.g., better than P_model for the Churchill Falls and Nakina images). Since HM and LMK 
approaches are unsupervised and context-unaware, this performance was surprising. 
However, after a closer look at the normalized images generated using the HM and LMK, 
we observed that many lichen patches had spectral signatures similar to those of clouds 
in the source image (Figure 8). Applying the cloud detector also led to the detection of 
many lichen pixels as cloud in the HM Nakina clips, confirming the visual analysis of the 
spectral signatures. This problem did not occur in the PSR_model and P_model Nakina, 
and the spectral signatures of the detected lichen pixels in the PSR_model closely con-
formed to those of the source image. As mentioned earlier, this was to some degree ex-
pectable as HM aims to shift the histogram of a target image to match the source image 
regardless of the type of features (and contextual and textural information) present in both 
the images. Relevant to this issue, color distortions in the HM and LMK images were an-
other important problem. Although XGBoost performed worse than the cGANs, lichen 
signatures in its normalized images had a similar trend as those of the source image but 
with lower mean values, as shown in Figure 8. 

 
Figure 8. Spectral signatures of two lichen and cloud pixels in the source image, and two lichen pixels in the normalized 
Nakina clips generated using the normalization approaches tested in this study. The signatures of lichen pixels in the HM 
and LMK normalized images closely match those of clouds in the source image, although this is not the case for the GAN 
and regression approaches. The two lichen pixels whose spectral signatures are shown for the normalized images are the 
same pixels in the respective images. 
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4.4. A Good Classifier Still Matters 
Although the results in the previous section demonstrated that it would be possible 

to improve the performance of lichen detection on target WV2 images by using cGANs, it 
should be emphasized that the performance of the classifier on the source image is still of 
critical importance. This in fact means that, rather than focusing more on improving the 
quality of normalized images, it may be more beneficial to train a more accurate model on 
the source image by collecting more samples if possible or by deploying more accurate 
classification approaches. In this section, we show that some of the main sources of false 
positive cases were actually common between the source and target images. In Figure 9, 
we chose two areas in the Fire Lake image and applied the PSR_model to them to discuss 
some sources of false positive errors. 

 
Figure 9. Two clips of the Fire Lake image along with the corresponding normalized clips generated 
by the PSR_model and the corresponding classification maps produced based on the normalized 
clips. 

The reason for choosing this image for this part of the research was that, in terms of 
land cover types, this image represented some of the main issues that the lichen detector 
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faced in the source image. Two main sources of errors in this image that can be ascribed 
to the lichen detector model were senescent trees and rock/soil. According to Figure 10, 
several senescent trees were misclassified as lichen in the target images. The same prob-
lem was also the case in the source image. Another problem with the lichen detector model 
on the source image was its weakness in differentiating some bright natural or man-made 
features (e.g., buildings, roads, dams, etc.) from caribou lichen. This problem was also 
apparent in the Region-2 image clip of the Fire Lake WV2 scene (Figure 10). Such misclas-
sifications indicate that domain shift is not the only main problem in machine learning 
(ML) generalization. The model trained on the source image is still assumed to be very 
accurate at least on the source image. 

 
Figure 10. Two enlarged portions of the images in Figure 9 showing the failure of the lichen detector 
in correctly classifying the senescent and rock/soil pixels as the background class. 
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5. Conclusions 
In this paper, we evaluated a popular GAN-based framework for normalizing HRS 

images (in this study, WV2 imagery) to mitigate illumination variations that can signifi-
cantly degrade classification accuracy. In this regard, we trained cGANs (based on 
Pix2Pix) using two types of data: (1) normalizing based only on the WV2 panchromatic 
band; and (2) normalizing based on the WV2 panchromatic band stacked with the corre-
sponding Sentinel-2 SR imagery. To test the potential of this approach, we considered a 
caribou lichen mapping task. Overall, we found that normalizing based on the two cGAN 
approaches achieved higher accuracies compared with the other approaches, including 
histogram matching and regression modeling (XGBoost). Our results also indicated that 
the stacked panchromatic band and the corresponding Sentinel-2 SR bands led to more 
accurate normalizations (and lichen detections accordingly) than using the WV2 panchro-
matic band alone. One of the main reasons that the addition of the SR bands resulted in 
better accuracies was that although the WV2 panchromatic band was less variable than 
the multi-spectral bands, it was still subject to sudden scene-to-scene variations (caused 
by different atmospheric conditions such as the presence of clouds and cloud shadows) in 
different areas, degrading the quality of the normalized images. The addition of the SR 
image further constrained the cGAN to be less affected by such variations found in the 
WV2 panchromatic band. In other words, incorporating atmospherically corrected auxil-
iary data (in this case, Sentinel-2 SR imagery) into the normalization process helped to 
minimize the atmosphere-driven scene-to-scene variations by which the WV2 panchro-
matic band is still affected. Applying the lichen detector model to the normalized target 
images showed a significant accuracy improvement in the results compared to applying 
the same model on the original pansharpened versions of the target images. Despite the 
promising results presented in this study, it is still crucial to invest more in training more 
accurate models on the source image rather than attempting to further improve the qual-
ity of the spectral transferring models. More precisely, if a lichen detector model fails to 
correctly classify some specific background pixels, and if the same background land cover 
types are also present in target images, it is not surprising that the lichen detector again 
fails to classify such pixels correctly regardless of the quality of the normalization. One of 
the most important limitations of this framework is that if the spectral signature of the 
lichen species of interest changes based on a different landscape, this approach may fail 
to detect that species, especially if it is no longer a bright-colored feature. So, we currently 
recommend this approach for ecologically similar lichen cover mapping at a regional scale 
where training data are scarce in target images covering study areas of interest. Another 
limitation is that there might be temporal inconsistency between a WV2 image and an SR 
image. In cases where there are land surface changes, this form of inconsistency may affect 
the resulting normalized images. 
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Appendix A 

 
Figure A1. Workflow of training and applying P_model and PSR_model for normalization and subsequent classification 
of target images. 
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Appendix B 

 
Figure A2. Classification maps produced based on the translated Labrador image clips using the PSR_model and P_model. 

 
Figure A3. Classification maps produced based on the translated Churchill Falls image clips using the PSR_model and 
P_model. 
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Figure A4. Classification maps produced based on the translated Nakina image clips using the PSR_model and P_model. 
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