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Abstract: Lichen is an important food source for caribou in Canada. Lichen mapping using remote
sensing (RS) images could be a challenging task, however, as lichens generally appear in unevenly
distributed, small patches, and could resemble surficial features. Moreover, collecting lichen labeled
data (reference data) is expensive, which restricts the application of many robust supervised clas-
sification models that generally demand a large quantity of labeled data. The goal of this study
was to investigate the potential of using a very-high-spatial resolution (1-cm) lichen map of a small
sample site (e.g., generated based on a single UAV scene and using field data) to train a subsequent
classifier to map caribou lichen over a much larger area (~0.04 km2 vs. ~195 km2) and a lower spatial
resolution image (in this case, a 50-cm WorldView-2 image). The limited labeled data from the sample
site were also partially noisy due to spatial and temporal mismatching issues. For this, we deployed
a recently proposed Teacher-Student semi-supervised learning (SSL) approach (based on U-Net and
U-Net++ networks) involving unlabeled data to assist with improving the model performance. Our
experiments showed that it was possible to scale-up the UAV-derived lichen map to the WorldView-2
scale with reasonable accuracy (overall accuracy of 85.28% and F1-socre of 84.38%) without collecting
any samples directly in the WorldView-2 scene. We also found that our noisy labels were partially
beneficial to the SSL robustness because they improved the false positive rate compared to the use of
a cleaner training set directly collected within the same area in the WorldView-2 image. As a result,
this research opens new insights into how current very high-resolution, small-scale caribou lichen
maps can be used for generating more accurate large-scale caribou lichen maps from high-resolution
satellite imagery.

Keywords: remote sensing; lichen mapping; deep learning; semi-supervised learning; teacher-
student learning; WorldView-2; unmanned aerial vehicle

1. Introduction

Global caribou herd populations have been reportedly declining in recent decades
because of multiple factors ranging from climate change to hunting and disease, according
to “International Union for the Conservation of Nature” [1]. Although the main driver
of this population decline is still ambiguous, most factors thought to be contributing are
directly or indirectly related to human activities [2,3], such as land-cover changes that can
affect resource availability for caribou [4] and can cause them to change their distribution,
migration, and timing patterns when foraging for food [5]. Lichen is an important source
of food for caribou especially during winters [6,7].
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Since the base data for caribou lichen mapping is generally UAV images covering
small areas, one of the primary challenges is to extend the maps generated based on UAV
images to much larger areas. Therefore, along with the type of data used, the method for
lichen mapping is also of crucial importance to improve the results. This is due to the
fact that the limited amount of data provided by UAV images may not help generalize
results to larger scales. Given recent advances in the field of artificial intelligence (AI),
this, therefore, demands for deploying advanced algorithmic approaches (such as semi-
supervised learning (SSL)) that can partially compensate for the lack of sufficient labeled
data.

Early research on lichen cover mapping using RS data was based on non-machine-
learning (ML) approaches. In one of the earliest studies in this field, Petzold and Goward [8]
found that Normalized Difference Vegetation Index (NDVI) may not be a reliable measure
for lichen cover estimation (especially where the surface is completely lichen covered) as the
values of this index may be misinterpreted as sparse green vascular plants. The Normalized
Difference Lichen Index (NDLI) proposed by Nordberg [9] is an index specifically for lichen
detection that is mainly used in conjunction with other vegetation indices. In a more recent
study, Théau and Duguay [10] improved the mapping of lichen abundance using Landsat
TM data by employing spectral mixing analysis (SMA). The authors reported that the SMA
overestimated (underestimated) lichen fractional coverage over sites with low (high) lichen
presence.

Orthogonal to the aforementioned studies, in 2011, Gilichinsky et al. [11] tested three
classifiers for lichen mapping using SPOT-5 and Landsat ETM+ images. They found that
Mahalanobis distance classifier generated the highest accuracy (84.3%) for mapping lichen
based on SPOT-5 images in their study. On the other hand, it turned out that a maximum
likelihood classifier reached an overall accuracy (OA) of 76.8% on Landsat ETM+ imagery.
However, the authors reported that the model did not perform well over areas where lichen
cover was <50%. Later in 2014, Falldorf et al. [12] developed a lichen volume estimator
(LVE) based on Landsat TM images using a 2D Gaussian regression model. To train the
model, the authors used the NDLI and Normalized Difference Moisture Index (NDMI) as
the independent variables, and ground-based volumetric measurements of lichen cover
as the dependent variable. Using a 10-fold cross-validation, the authors reported that the
model achieved an R2 of 0.67. In 2020, a study by Macander et al. [13] employed different
data sources, including plot data, UAV images, and airborne data, to map the fraction
of lichen cover in Landsat imagery using a Random Forest (RF) regressor. However, the
authors reported that they observed an overestimation for low lichen cover sites, and an
underestimation for high lichen cover sites.

Although there have recently been seminal studies on lichen mapping using powerful
ML models (e.g., deep neural networks (DNNs) [14]), there are some gaps that have not yet
been approached in this field. An important issue in this field is the lack of sufficient labeled,
ground-truth lichen samples. As with any other environmental RS studies, lichen mapping
suffers from “the curse of insufficient training data”. It is now clear that insufficient training
data deteriorates the generalization power of a classifier, especially DNNs which can easily
memorize training data [15].

In case of limited labeled samples, a workaround is to use unlabeled samples that
could be available in large volumes. In fact, learning from unlabeled samples could
implicitly help improve the generalization performance of the model trained on limited
labeled samples. There are a wide variety of methods for involving unlabeled data in a
classification setup. Perhaps, one of the most commonly used approaches is unsupervised
pre-training of a network and reusing its intermediate layers for training another network
on the labeled set of interest [16]. If unlabeled samples are not abundant, another method
could be based on transfer learning [17]. This approach is based on using a network trained
on a large data set in another domain (e.g., natural images) or in the same domain but for a
different application (e.g., urban mapping). This network can be then either fine-tuned on
the limited labeled data of interest or used as a feature extractor for another classifier or
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other downstream tasks. The potential of transfer learning has also been proven in the RS
community [18].

Another class of methods that can take advantage of unlabeled data is semi-supervised
learning (SSL). Some SSL methods, known as wrapper methods [19], generally explicitly
incorporate unlabeled samples into the training process by automatically labelling them
to improve the performance of the model [20]. The concept of Teacher-Student SSL is an
example of such a method that has shown to improve the generalization when limited
labeled data are available [20,21]. In this regard, Naïve-Student [22] has been recently
proposed as a potentially versatile SSL approach for the pixel-wise classification of street-
level urban video sequences. This approach integrates SSL and self-training iteratively
through a Teacher and Student network, where the Student network can be the same as
or larger than the Teacher network. In contrast to a similar approach known as Noisy-
Student proposed earlier by [20,21], Naïve-Student does not inject data-based noise (i.e., data
augmentation) directly to the training process to improve the robustness of the Student
network. Instead, it uses test-time augmentation (TTA) functions when predicting pseudo-
labels (i.e., labeling unlabeled samples) on which later the Student network is trained. The
premise of such an approach is to train a Student network that outperforms the Teacher
network. Besides, the iterative nature of both Noisy-Student and Naive-Student approaches
helps improve the Student network further.

In environmental studies, there are cases where current maps were generated based
on very high-spatial resolution aerial images covering small areas, but later the aim will
be to reuse those maps to generate much larger-scale maps using another image source
without conducting any further labeling. Scaling-up local maps is restricted by many
factors (e.g., spatial/temporal misalignments, classification errors, etc.) that may prevent
generating large-scale maps with appropriate accuracy. The accuracy of such a scale-up
is further degraded in cases where the current high-resolution maps cover a very small,
homogeneous area. This is due to differences in soil/substrate or climate conditions
that could lead to variability in the spectral signature of the vegetation of interest [23,24].
Although multi-scale/sensor mapping in the field of RS is a common application, it has
been mostly performed either using conventional ML approaches or using data-fusion
frameworks [25–27]. In this study, we approached this problem in a different way: To what
degree is it possible to scale-up very-high-resolution lichen maps produced over small,
homogenous areas to a much larger scale without labeling any new samples?

Taking into account the above question in this research, we aimed to scale-up a very
high-resolution lichen map, generated from a small UAV scene, to a high-resolution satellite
level, namely WorldView-2 (hereafter, WorldView). This scaling-up task posed several
challenges. First, training a fully supervised approach in such a case would result in poor
accuracy because training samples were not sufficient and diverse enough. Second, we
expected the classifier performance to be negatively impacted by errors associated with
image misalignments. These errors, caused by various spatial and temporal offsets, can
lead to undesirable errors in the model training process. These sources of error caused
noisy labels (i.e., wrong labels) in the WorldView image when the UAV-derived lichen
map was scaled-up. We, therefore, investigated whether a small, noisy UAV-derived lichen
map could be used to train a highly generalized model capable of producing accurate
results over a much larger area. To improve classification performance, we adapted Naive-
Student [22] to the lichen mapping task in this study to leverage unlabeled data in the
training process.

2. Methodology
2.1. Study Area and Data

The study area (~405 km2) is located south of the Manicouagan Reservoir, Québec,
Canada, around the Manic-5 dam (Figure 1). In undisturbed portions, this area is comprised
primarily of dense boreal forests (black spruce dominated) and open lichen woodlands,
or forests with lichen. This region features diverse vegetation species including various
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types of bright caribou ground forage lichens within the Cladonia genus (predominantly
C. stellaris, C. rangiferina, C. stygia, and C. uncialis) and Stereocaulon genus.
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Figure 1. (a) southern part of the WorldView scene (used for model training), (b) the UAV scene, and
(c) four examples of the micro-plots collected within the UAV survey extent.

We had three main sources of image data to accurately map lichen cover over the
study area:

• In-situ digital photographs of ground conditions within vegetation survey micro-plots
(Figure 1c)

• Very-high-resolution aerial data: UAV images with a spatial resolution of 1 cm
(Figure 1b)

• High-resolution satellite data: Pansharpened WorldView images with a spatial resolu-
tion of 50 cm (Figure 1a)
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The field data and aerial image used in this study were part of a field campaign
conducted between 22 July and 2 August 2019, in Québec and Labrador, Canada. The
very-high-resolution aerial scene was acquired using a Sentera Double 4K NDRE camera
onboard a DJI Inspire-1 UAV at a spatial resolution of 1 cm. The UAV was flown at 35 m
above ground level at 17 km/h. The camera onboard was set to acquire one frame per
second. To improve the spatial accuracy of the final mosaicked UAV scene, we distributed
three ground control points in visible areas across the site and recorded their center points
using a high-precision Global Navigation Satellite System (GNSS). The image originally
had four spectral bands, namely RGB and NIR. We used Pix4D software to produce a
georeferenced orthomosaic over the UAV surveyed site. The final mosaicked UAV scene
covered approximately 0.04 km2 (4 ha). Along with the UAV survey, we collected digital
photographs of 11 vegetation survey micro-plots on 24 July, 2019. The second RS image
source was an 8-band WorldView scene acquired on 9 September 2017 covering the whole
study area. To improve the spatial resolution of the multi-spectral bands, we pansharpened
the WorldView image to the spatial resolution of the panchromatic band (50 cm) using
the proprietary pansharpening algorithm in Geomatica Banff software. The WorldView
image was divided into two parts, namely a Northern part and a Southern part (Figure 1a).
The Southern part contained the UAV survey location and was used exclusively for model
training purposes. We reserved the Northern part for model testing. To mitigate the effect
of spatial misalignments between the datasets, we co-registered the UAV and WorldView
images using an Affine model with 14 manually identified tie points. This resulted in an
RMSE of 0.68 m.

2.2. Classification Framework

A high-level overview of the scaling-up framework used in this study is presented in
Figure 2. We started the procedure by classifying the UAV image based on a labeled set
collected using in-situ plot images and the UAV image itself. The quality of the scale-up
was highly dependent on the UAV map.
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We first used an integration of deep learning and geographic object-based image
analysis (DL-GEOBIA) approach [28] to detect caribou lichen cover within the UAV scene.
The first step in this approach was image segmentation. We used the multi-resolution
image segmentation (MRS) algorithm [29,30] with a Scale parameter (SP) of 30 and a
neutral value (i.e., 0.5) for the Compactness and Smoothness parameters, which were
selected by performing a trial-and-error process. The SP was chosen in such a way that it
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would generate pure but not very over-segmented image objects, preventing the extraction
of useful features. Afterwards, 1825 point samples were randomly selected in the UAV
image. It was made sure that none of the point samples fell inside the same segments.
For training, 80% (1460) of the segments inside which the corresponding point samples
fell were selected. Of these 1460 segments, 20% (292) were used as a validation set to
fine-tune the model. To mitigate bias/optimism in our accuracy assessment, we performed
a pixel-based accuracy assessment rather than an object-based one, and thus chose the
corresponding pixels of the remaining 20% points (365) as a test set. To identify the true
labels of the image segments/pixels, the micro-plot images and direct image interpretation
of the UAV image were used. Based on an exhaustive cross-validation and grid-search, we
then concluded that a four-layer multi-layer perceptron (MLP) (Table 1) in the DL-GEOBIA
setup with 30 neurons in each hidden layer, ReLU activation for all layers (except for the
output layer with a sigmoid function), Adam optimizer with a learning rate of 0.001, and
dropout layers with a probability of 0.5 resulted in the best accuracy.

Table 1. Details of the networks used in this study.

Model Learning Rate Optimizer # of Neurons/Filters # of Trainable
Parameters

DL-GEOBIA 0.001 Adam 30 (in each layer) 3691

U-Net, U-Net++ Training: 0.001
Fine-tuning: 0.0001 Adam 32-64-128-256-512 U-Net: 7,767,425

U-Net++: 9,164,769

After classifying the UAV image, we resampled it to the spatial resolution of the
pansharpened WorldView image, namely 50 cm. The rescaling was based on a majority-
voting approach; that is, if more than 50% of the pixels of the UAV-derived lichen map
within a pixel footprint of WorldView image were classified as lichen, we considered that
pixel as lichen. This implies that because of different types of errors, there were some pixels
not corresponding to a true lichen patch (or background) in the WorldView image. The
resampled lichen/non-lichen map was then used as the label map for training another
classifier on the WorldView image. We employed Naive-Student [22] as an SSL approach
to take advantage of unlabeled data for training a more generalizable model. The use of
SSL would indirectly help learn about the area missing within our original training data.
In fact, our main goal was to improve the robustness of the classifier against misleading
samples our classifier had not seen in the labeled data.

2.2.1. Semi-Supervised Learning: Naïve-Student

Building on [20,21], Naïve-Student is an approach to training neural networks in a
semi-supervised fashion when limited labeled data are available. This approach is based
on a Teacher-Student framework where the goal is to improve the performance of the Student
network iteratively using both labeled and unlabeled samples. In contrast to Knowledge
Distillation [31], Naive-Student aims to expand knowledge (or the capacity of the Student).
In other words, the student network will eventually generalize better than the Teacher
network. The premise of such an SSL framework basically is to improve robustness [21].

Since we had limited data available, we first split the UAV and WorldView images
into equally sized image patches before inputting them to the networks in this study. Given
this, to formalize the Naïve-Student, let X = {(x1, y1), (x2, y2), . . . (xn, yn)} be a set of paired
n image patches and respective label maps. In addition, let X̃ = {x̃1, x̃2, . . . , x̃m} be a set of
m unlabeled image patches. The size of both the labeled and unlabeled patches in this study
was chosen to be 64 by 64 pixels, with the labeled image patches having an overlap of 75%.
The reason for using a large overlap was two-fold: (1) minimizing the edge-effect problem
in predictions, and (2) increasing the number of training data, which can be considered as
a data augmentation process [32]. Given these two data sets, Naïve-Student procedure in
the context of this research can be summarized as follows:



Remote Sens. 2021, 13, 2658 7 of 24

1. Train a Teacher network θt
∗ minimizing binary cross entropy on the labeled set:

1
n

n

∑
i=1

L
(
yi, f

(
xi, θt)) (1)

2. Generate hard pseudo-labels for the unlabeled set with test-time augmentation (TTA)
functions (in this study, vertical and horizontal flips):

ỹi = f
(
TTA(x̃i), θt

∗
)
, ∀i = 1, . . . , m (2)

3. Train an equal or larger Student network θs
∗ minimizing binary cross entropy on the

pseudo-labeled image set:
1
m

m

∑
i=1

L(ỹi, f (x̃i, θs)) (3)

4. Fine-tune the trained Student network θs
∗ on the labeled set:

1
n

n

∑
i=1
L(yi, f (xi, θs

∗)) (4)

5. Replace the Student network θs
∗∗ with the Teacher network and start over from step 2.

These steps, starting from the second step after the first iteration, are repeated for a
certain number of iterations until desired results are achieved based on smallest validation
loss.

The choice of the networks used as the Teacher and Student is highly dependent on
the application at hand. Choosing very deep models for easy tasks may lead to extreme
overfitting after a few epochs. We used a U-Net model [33] as the initial Teacher model. This
network has been frequently proven to be an accurate model for different mapping tasks
in RS, and thus it was also a suitable choice for lichen mapping. For the Student model,
we selected a U-Net++ [34], which is a nested version of the plain U-Net and generally
outperforms U-Net. The reason for choosing U-Net++ was two-fold: (1) we needed a
model that would be more accurate than U-Net, thus more likely helping improve the
performance of the Student model; and (2) we needed a consistent model to U-Net which
was not much deeper, causing early overfitting. In fact, since U-Net++ is an enhanced
version of U-Net, its architecture is consistent with U-Net, so that hyperparameter tuning of
U-Net++ would not be different from U-Net. It should be noted that the original U-Net++
uses a custom loss function which is a combination of the standard binary cross entropy
and Dice function. However, in this study, we instead used the standard binary cross
entropy, as we found it more suitable and stable for the mapping task in this study. In
addition, neither data over-/under-sampling nor class weighting was employed while
training the Student network on pseudo-labels. In fact, there were more complex patterns
in non-lichen features that the model needed to decipher to improve its robustness against
misclassifying background pixels as lichen.

We used a U-Net with 32 initial convolutional filters and the convolutional blocks
of 32-64-128-256 convolutional filters, and the bottleneck with 512 convolutional filters.
The schematic of the U-Net model applied in this study can be seen in Figure 3. We also
used a U-Net++ (Figure 4) with the same 32 initial convolutional filters and convolutional
blocks, without the deep supervision mode. We used the Adam optimizer to train both
the networks. As mentioned earlier, rather than using the single training image as direct
input to the SSL, we split it into equally sized, overlapping patches, which is a common
practice when limited data are available and/or when the entire image cannot fit in the
GPU memory [33,35]. Since we had limited labeled samples, we initialized our Teacher and
Student networks using supervised pretrained U-Net and U-Net++. To make the models
more adaptable to the domain of this study, we pre-trained them on an urban pixel-wise
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classification task on a large WorldView scene and reused the intermediate weights in the
Naive-Student setup.
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Figure 3. Architecture of the zero-padded U-Net model used as the initial Teacher network in the
Naïve-Student in this study.
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Figure 4. High-level architecture of the U-Net++ model used in the Naïve-Student framework in this
study. Note: Values under each circle (i.e., convolutional blocks) indicate the depths of outputs from
the respective layers.

The training started with the initial Teacher network, namely U-Net, using a learning
rate of 0.001. To improve generalization, we used dropout layers (with a probability of 0.25)
in both U-Net and U-Net++ networks during training, while dropout layers were disabled
during inference (i.e., during pseudo-labeling and test labeling). The first Teacher model
was trained on the labeled training data whose labels were obtained from the resampled
UAV-derived map. All the training for each Teacher network terminated once no boost on
the loss (i.e., binary cross entropy loss) of the labeled validation set was observed after a few
consecutive epochs. Afterwards, the trained model was applied to the large unlabeled data
set to generate the respective pseudo-labels. As with the original Naïve-Student approach,
we applied a TTA. We used flipping functions (i.e., horizontal and vertical) with no multi-
scale transformation, as it did not lead to a tangible improvement because of the partially
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scale-independent nature of the lichen mapping task in this study. The pseudo-labeled
data were then used as a training set for training the Student network (i.e., U-Net++). We
used 80% of the pseudo-labeled data for training and the remaining 20% for validating the
model. The trained Student model was then fine-tuned on the labeled training data with a
smaller learning rate (i.e., 0.0001) to prevent weight explosions in the pre-trained model.
For training all the networks, we used a batch size of 16, which was selected experimentally
based on the directions provided by Masters and Luschi [36]. The fine-tuned Student was
utilized as a new Teacher to repeat the whole process in the second iteration. This process
was repeated until the smallest loss on the labeled validation set was achieved.

There were also clouds over some parts of the WorldView scene. Before training,
we did not mask out clouds, cloud shadows, or water from the training process on the
WorldView scene. In fact, we also aimed to analyze the robustness of SSL against cloud
pixels that were spectrally similar to some lichens. For training and validation set selection,
the resampled UAV-derived label map was split into 52 non-overlapping valid image
patches. If an image patch had more than 256 invalid pixels (i.e., pixels not labeled),
we discarded it from our analysis. We used ~70% of the image patches for training (i.e.,
37 patches) and the rest for validation (i.e., 15). Then, as described earlier, 75%-overlapping
image patches were extracted from neighboring training image patches.

2.2.2. Noisy Labels

Noise is an inseparable component of any data. Our data suffered from standard noise
sources such as sampling noise and sensor noise. However, we also considered noise as
any type of data disagreement that resulted in mislabeling. For example, assuming that the
UAV and WorldView images were perfectly co-registered, there could be a lichen patch
that was easily visible in the UAV image but occluded by tree shadows in the WorldView
image. Another example of a data disagreement is orthorectification errors that can cause
underlying land cover to appear differently in the two images. To analyze the role of noise
in this research, we first need to clarify what we exactly mean by “noisy labels”. With
respect to the scaled-up UAV-based lichen map, the term “noisy labels” in the context of
this research had three different forms:

• Pixels wrongly labeled as lichen: This included pixels that were devoid of any lichen
patch in the WorldView image but wrongly labeled as lichen (i.e., false positive error).

• Pixels wrongly labeled as background: This included pixels that were actually lichen in
the WorldView image but were labeled as background (i.e., false negative error).

• Pixels correctly labeled as lichen but shadow contaminated: This included pixels that
corresponded to a lichen patch in the WorldView image but were largely occluded by
shadows (i.e., false positive error).

Past research has shown that DNNs to some degree are robust to noise compared
to conventional models [15]. In fact, because of the memorization effects, DNNs first fit
to clean data, and after some epochs, start overfitting to noisy data [37]. Therefore, early
stopping based on a clean validation set may help prevent the model from memorizing
mislabeled samples. However, providing a clean validation set in real-world applications
is very cumbersome. The Naïve-Student approach itself is also partly robust to noisy labels
but is not immune. In this study, rather than attempting to refine our training set by
filtering out noisy labels, we kept them to analyze how such label noise would affect the
performance of the SSL framework for lichen detection. In addition, to test the effect of
noisy data on model performance, we developed a cleaner training dataset by delineating
training data in the WorldView image directly. This experiment would show the effect of a
noisy labeled set compared to a possibly clearer labeled set.

To expand the assessment of the SSL framework, we also deployed a pixel-based
RF approach for lichen detection. The reason for using a pixel-based RF approach for
comparison purposes in this study was due to the popularity of this algorithm for lichen
mapping [13,38] as it is an accurate conventional model and is more computationally
efficient than Support Vector Machine (SVM), which is another powerful conventional
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algorithm. To select the most appropriate hyperparameters, a grid-search procedure was
employed. Grid search for hyperparameter tuning resulted in a value of 500 as the number
of trees, a value of 2 as the minimum samples per leaf, and the square root of the total
number of randomly chosen features at each split. Along with the 8 spectral bands of
the WorldView image, we calculated NDVI and gray level co-occurrence matrix (GLCM)
features (mean, dissimilarity, homogeneity, variance, entropy, correlation, contrast, and
second moment) to improve the performance of the model in detecting lichen cover.

2.2.3. Programming Environment

All the neural network models were implemented using the PyTorch framework, and
the RF model using the scikit-learn library. Other Python libraries including NumPy and
Rasterio were also used for (geo)data handling. The framework was run on Compute
Canada servers (i.e., Graham GPU clusters) using NVIDIA V100 GPUs and 100 GBs of
RAM. We also used Google Colab for prototyping and initial testing of our models.

2.2.4. Accuracy Assessment

For accuracy assessment purposes, we collected 3000 pixels randomly and manually
to equalize the number of samples in each class as much as possible. Samples that fell on
clouds or were difficult to interpret were discarded, resulting in a total of 2649 samples.
Two main measures of accuracy assessments were used: Overall accuracy (OA) (Equation
(5)) and F1-score (Equation (6); and its components Precision (Equation (7)) and Recall
(Equation (8)).

OA =
True Positive + True Negative

Positive+Negative
(5)

F1− score =2× Precision× Recall
Precision + Recall

(6)

Precision =
True Positive

True Positive + False Positive
(7)

Recall =
True Positive

True Positive + False Negative
(8)

3. Results

According to the experiments, the OA and F1-score of the classified UAV image were
97.26% and 96.84%, respectively. Figure 5a illustrates the resampled (50-cm) classified UAV
map superimposed onto the corresponding area of the WorldView scene. In this figure, it
is also evident that there are some non-lichen pixels wrongly labeled as lichen or vice versa.
The results of our assessment on the resampled map at the WorldView level showed an
OA and F1-score of 83.61% and 90.74%, respectively, which indicates a tangible accuracy
degradation compared to the original, non-scaled-up UAV map. No specific preprocessing
or sampling was performed before training the SSL networks at the WorldView level.

The best result of training the Teacher-Student framework was achieved after three
iterations (where the smallest labeled validation loss was achieved) namely that the Student
network was used as a Teacher in two iterations. Figure 6 shows a small portion of the
WorldView image (also covering the UAV extent) that was used as an input to each of the
three networks obtained after each iteration to predict lichen pixels. The Student network
improved gradually after each iteration. The most obvious performance improvement can
be seen over the road pixels and some tree types that were differentiated more accurately
from lichen patches as the network evolved. Essentially, the Type I error was reduced
after each iteration without adding new training samples to the process. This confirms
that an iterative Teacher-Student SSL approach could help improve pixel-wise classification
accuracy when only a small training set is available.
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Figure 7 displays the map generated for the Northern part (i.e., test image) of the
WorldView scene using the SSL approach. Unsurprisingly, some parts of the thick clouds
were erroneously classified as lichen. However, most of the thin clouds and haze were
correctly differentiated from lichen. We also observed that some rippling-water pixels were
misclassified as lichen, although the number of misclassified water pixels was much less
than that of misclassified cloud pixels. It should be noted that neither of these two classes
were present in the labeled samples used for constructing the SSL models. Misclassification
of some trees as lichen was caused by mislabeled pixels in the scaled-up UAV-derived
lichen map. To handle misclassified pixels over cloud areas, we applied a simple cloud
masking using the Fire Discrimination Index (FDI), which was reported to be useful for
cloud-masking in WorldView imagery [39]. Although applying this mask resulted in the
removal of most of the lichen misclassifications over cloudy areas, there were still few
cloud pixels that required manual removal as employing a larger threshold would remove
some lichen pixels as well.

Based on our quantitative accuracy assessment, the SSL-based WorldView lichen map
had an OA of 85.28% and F1-score of 84.38%. From the confusion matrix (Table 2), it can be
concluded that the rate of misclassification of background pixels as lichen was less than the
rate of misclassification of lichen pixels as background (i.e., more lichen underestimation
than lichen overestimation). The activation maps (Grad-CAM [40]) of the SSL U-Net++
for two image titles containing lichen patches can be seen in Figure 8. We can see that
the network learned low-level features (like edges, and some basic relationships between
lichens and neighboring areas) in the first few layers (first convolutional block). In the last
layers, the network combined abstract and high-level features to perform final predictions,
resulting in CAMs looking very similar to the prediction maps. Comparing the SSL U-
Net++ with the supervised one showed a significant accuracy improvement (more than
15% and 22% improvement in OA and F1-score, respectively). The more important part
of accuracy improvement was due to the higher true positive rate of the SSL U-Net++
(Table 2), which is mainly because of the increase in the size of training data provided
through the iterative pseudo-labeling and fine-tuning.
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Table 2. Confusion matrices calculated based on the classification maps generated by the models in
this study. Note: The SSL models are based on the final U-Net++ Student networks.

Main model

OA = 85.28%
F1-score = 84.38%

True label

Lichen Background

Lichen 1053 229

Background 161 1206

Cleaner model

OA = 85.05%
F1-score = 85.27%

True label

Lichen Background

Lichen 1146 328

Background 68 1107

Overfitted model

OA = 64.82%
F1-score = 48.68%

True label

Lichen Background

Lichen 442 160

Background 772 1275

Supervised U-Net++

OA = 70.93%
F1-score = 62.07%

True label

Lichen Background

Lichen 630 186

Background 584 1249

RF model

OA = 60.89%
F1-score = 27.86%

True label

Lichen Background

Lichen 200 22

Background 1014 1413
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3.1. Noisy Labels vs. Cleaner Labels

We hypothesized that noise, specifically false positive detections, would have a delete-
rious effect on our results. In fact, since lichen maps generated based on high-resolution
data are commonly used to map fractional lichen cover in coarser images (e.g., Landsat
imagery), the priority may typically be to generate a map with a lower false positive rate
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(instead of a higher true positive rate). In this section, by rejecting the above-mentioned
hypothesis, we discuss that not only these types of noise were not deleterious, but also
they, to some degree, enhanced the robustness of the SSL along with the use of unlabeled
data. To demonstrate this experimentally, rather than scaling-up the UAV-based lichen
map to the WorldView image and then training the SSL baseline on it, we directly classified
the same area in the WorldView image. For this purpose, we used the same 1825 points
employed for training and testing the DL-GEOBIA model on the UAV image. However,
this time we pre-screened the points to correct mislabeled samples and replace those falling
inside the same segments (i.e., in the segmented image) with new randomly chosen ones.
The samples were then used for training another DL-GEOBIA model capable of detecting
lichen pixels over the area. According to the accuracy assessment, the OA and F1-score
measures were 88.52% and 93.46%, respectively. As expected, this map had a higher accu-
racy than the resampled one. In other words, compared to the scaled-up UAV-based lichen
map, this map visually appeared to have higher Precision (i.e., less background pixels
were wrongly classified as lichen), especially over shadow and tree classes. Furthermore,
a greater number of pure lichen pixels were detected correctly, which was at the expense
of not detecting spectrally mixed lichen pixels that were more difficult for the classifier
to identify in the WorldView image compared to the UAV image. As a result, this map
provided a suitable case to analyze the effect of Type I error on the SSL training. This map
was then used for training the SSL networks using the same procedure described earlier.

Figure 9a illustrates the map generated using the trained SSL framework on this
cleaner training dataset (hereafter, cleaner model). We can clearly see that more cloud
pixels were classified wrongly as lichen compared to the map generated by the main
model in Figure 7a. Accuracy assessment on this map showed an OA and F1-score 85.05%
and 85.27%, respectively. According to the confusion matrix (Table 2), the cleaner model
classified less background pixels correctly compared to the main model trained on the
noisy labels. However, it detected more lichen pixels correctly than the main model did.
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3.2. Overfitted SSL

As discussed earlier, since DNNs generally first fit to clean samples and then overfit to
noisy samples, preventing the network from extreme overfitting can significantly improve
the performance of the model. To realize the effect of overfitting to our noisy labels for
lichen mapping, we experimented a scenario where all the samples were used for training
the SSL approach; that is, no validation set was used to perform early stopping. In fact,
we let the networks overfit to the noise in our training data to realize the negative effect
of natural noise in the case of overfitting in this study. After training the overfitted SSL,
we applied it to our WorldView test image resulting in the map presented in Figure 9b.
Although clouds were better distinguished from lichen pixels in this map, the overfitted
SSL produced a lichen map with significantly lower OA and F1-score (64.82% and 48.68%,
respectively) than the main map did (Figure 7). There is also a major increase in the
number of non-lichen misclassifications, especially over water bodies. We expect that
such misclassifications resulted from the lack of generalization in the model. Moreover,
partly discriminating clouds from lichens was to some degree indicative of learning from
noise. This, however, was at the expense of considering noisy labels as true labels (i.e.,
water pixels and thin clouds). The corresponding confusion matrix (Table 2) shows that
the network had a low performance for detecting lichen pixels correctly. This classifier
had the worst accuracy compared to the other two SSL ones. The classifier detected lichen
patches very sparsely as the network had a low lichen detection rate (Figure 10). In fact,
of 1214 lichen pixels, only 442 of them were correctly detected. Moreover, according to
Figure 9b, the unusual misclassifications of many background pixels (e.g., water bodies,
thin clouds, etc.) proved the poor accuracy of the model overfitted to a noisy, limited
labeled dataset.

A closer comparison among the maps generated by the three types of SSL models is
provided in Figure 10. According to this comparison, denser lichen patches were detected
by the cleaner model. In other words, within a given lichen patch, more lichen pixels were
detected correctly. This was less the case for the map generated by the main model as
some lichen pixels within a given lichen patch were missed. The worst case occurred in the
map derived from the overfitted model. These observations are in line with the previously
described confusion matrices in Table 2. As discussed earlier, the noisy model misclassified
many cloudy pixels into lichen pixels. Although we were able to rule out many of those
misclassifications using the FDI mask, there were still cloud pixels where the mask was not
able to remove them. This was mainly the case in areas where there were thin clouds or
haze. Overall, we observed that the SSL network trained on the naturally noisy labeled
data was more consistent than the cleaner model was. In fact, it was found that there was a
trade-off between false positive and false negative errors in this map.
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3.3. Pixel-Based RF Model

In this section, we present and discuss the performance of the pixel-based RF applied
for the scaling-up of the UAV-derived lichen map. As shown in Figure 11, the map
generated with the RF model was able to correctly classify many cloud pixels like the
overfitted model did. However, it had a low lichen detection rate, even worse than the
overfitted model, which is not surprising as conventional ML models are less generalizable
than CNNs. As shown in Figure 11, it is obvious that many cloud pixels were correctly
classified as background, but it was at the expense of losing sufficient sensitivity for
detecting many lichen pixels. According to the accuracy assessment results (Table 2 and
Figure 12), the RF model had an OA of 60.89% and F1-score of 27.86%. Compared to the
CNNs applied in this study, the much lower F1-score of the RF model is mainly due to its
very low Recall performance. Considering the confusion matrix of the RF model (Table 2),
although the model was able to correctly classify most of the background test samples, it
performed very poorly in detecting true lichen pixels in the test set.
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4. Discussion

Scaling-up a small, very-high-resolution lichen map to a coarser, larger scale is a
challenging task. In fact, given limited prior information, we expect an ML model to
produce quality maps, which is a very hard problem for any model or training approach.
Results presented in this study indicated that even using a small base map, we were able to
carry out the scale-up process to obtain a reasonably accurate distribution map (i.e., OA of
~85% and F1-score of ~84%) for bright caribou lichens at a much larger scale. In addition
to the small extent of the UAV image, another limiting factor was the lack of sufficient
land-cover diversity over the UAV extent. The area surveyed with the UAV contained
four primary land-cover types (i.e., soil, tree, bright caribou lichen, and grass). Beyond the
extent of the area surveyed with UAV, we encountered several new land-cover types, some
of which could mislead the classifier. Another potential issue for the scaling-up process
was the presence of label noise in the training set prepared for the Naïve-Student training.
Although the behavior of DNNs against noise is not yet fully understood, past research
has shown that DNNs have a tendency to first fit to clean samples and then overfit to noise
after some epochs [15,41]. However, in this study, we had natural, not synthetic, noise in
our label data. The resampled UAV-derived map had several mislabeled pixels caused by
spatial and temporal data disagreements between the UAV and WorldView images. All
these sources of label noise are different from data noise and classification-driven noise.
Such noise can also affect the quality of the scaled-up maps that are generally difficult
to avoid. The fourth problem was the presence of clouds and haze in the WorldView
image. We depicted that the main model occasionally misclassified thick clouds as lichen
and thus overestimated lichen cover. We addressed this issue by removing most of these
misclassifications with an FDI mask. Conversely, the presence of haze over some areas
with lichen led to misclassifications of lichen and therefore caused an underestimation of
lichen cover. Given this, we found that clouds caused both false positive and false negative
errors in cases where target lichens would be bright colored, as in this study.

The better performance of the cleaner model compared to the main model in detecting
more lichen patches correctly (i.e., higher Recall) can be ascribed to the fact that more pure
lichen training samples (i.e., less noisy labels) were used for training the network. This,
however, degraded the Precision of the model compared to the main model.

Given the limited labeled samples and their lack of sufficient diversity, it appears that
noisy labels helped prevent the model from memorizing homogenous patterns in the data.
These findings are in line with those reported by Xie, Luong, Hovy, and Le [21] where they
found that injecting noise to the Student network was one of the main reasons for improving
the generalization power of their SSL approach. However, in our study, we had natural
noise resulting from the scaling-up of the UAV-derived lichen map. This type of data noise
affected both the Teacher and Student networks, as opposed to the Noisy-Student approach in
which data noise (i.e., image augmentation) is only injected to inputs of the Student network,
and as opposed to Naïve-Student in which no explicit data noise is applied. This natural
noise ultimately improved robustness related to Type I error in the Naïve-Student approach
applied in this research. Although the natural noise in this study partially improved the
robustness of the model, overfitting to noise would be a critical problem if models are not
trained appropriately. Considering this issue, we showed that overfitting to noise caused
very poor accuracies, resulting in detecting many non-lichen pixels erroneously as lichen.

We also presented a mapping result generated with an RF model and a high-dimensional
feature set. Although RF is a popular method in lichen mapping, accuracy assessment
results showed that it did not lead to an accurate map. This was, however, to some degree
expected as pixel-based models do not generalize well. Processing times of SSL and RF are
presented in Table 3. Training the SSL was more time consuming than RF and supervised
U-Net++. However, the inference time of the RF was higher, although this is without
considering the time spent on computing the GLCM features in the test image.
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Table 3. Training time of SSL and RF models.

Models Training Time

SSL (average) ~2 h (3 GPUs)
RF ~15 min (10-core CPU)
Supervised U-Net++ ~5 min (1 GPU)

Given the above limitations, the use of unlabeled samples in a full-fledged SSL model
was advantageous in scaling-up the UAV-derived lichen map to the WorldView scale.
However, it is obvious that if lichens of interest are of different colors, and not all of them
are present within the extent of the very-high-resolution maps, SSL will fail to detect those
lichens in larger-scale images. The results also showed that although the UAV site was very
homogenous, it was possible to obtain a map with a reasonable rate of false positive, which
is important for lichen mapping tasks. The use of unlabeled data and noisy labels was
found to improve the robustness of the network against samples that could have caused
Type I error.

Although the main and cleaner SSL models led to better accuracies compared to the
other approaches used in this study, one of the challenges with training these models
was their computational complexity compared to supervised approaches. Not only were
multiple models iteratively trained, but also the number of data used for training was
also increased compared to the supervised models. This caused a significant increase in
the execution time of the training process. In general, one of the main computational
bottlenecks in the SSL approach was the dense prediction of pseudo-labels and then using
them for training the Student models, which, as mentioned above, were then trained on
a much larger data set. Another relevant factor affecting the computational time of the
SSL approach was the TTA that was performed during pseudo-labeling. These two factors
were the major computationally intensive components of the SSL in this study. Given the
accuracy improvement provided by the main SSL model, and the expectations of the lichen
mapping task under consideration, this inefficiency compared to the supervised models
and to the very expensive labeling tasks is justifiable provided that sufficient computational
resources are available.

5. Conclusions

In this study, we assessed the possibility of scaling-up a very fine lichen map acquired
over a very small, homogenous area to a much larger area without collecting any new
labeled samples. We used a Teacher-Student SSL approach (i.e., Naïve-Student) that trains
Teacher and Student networks iteratively on both labeled and unlabeled data. This approach
produced a reasonably accurate (OA of ~85% and F1-score of ~84%) lichen map at the
WorldView scale. The main findings in this research are as follows:

• A powerful SSL approach capable of taking advantage of abundant unlabeled data
is beneficial for scaling-up small lichen maps to large scales using high-resolution
satellite imagery, provided that there are samples for lichens of interest within the
small lichen maps under consideration.

• Different types of image misalignments can introduce noisy labels in the scaled-up
training set. However, we found that if this noise is not massive, it may ultimately
improve the model robustness without conducting any intensive data augmentation
on training data.

• The map generated by the cleaner model indicated a higher Recall but a lower Preci-
sion than the map generated by the main model.

• Overfitting in the presence of noise significantly degraded the performance of the
trained network when applied to the test image. That network failed to detect many
lichen patches and resulted in low accuracy. In some cases, we observed that due to
overfitting to noisy labels (especially dark areas), many lichen misdetections occurred
over water bodies resembling noisy labels in the training set.
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There is a need for more comprehensive studies on the effect of label noise on final
classification results. This is an important gap in the context of lichen mapping although
when using multi-source/sensor data, there will be several types of misalignments that
cause label noise. In this regard, a potential future direction for RS-based lichen map-
ping could be to conduct more in-depth studies on the nature and amount of noise that
can improve the robustness of a model. This can be performed based on a systematic
study introducing synthetic and natural noise to the classification procedure. Similarly,
it could be investigated whether an ensemble of fine-tuned Student networks is able to
produce more accurate results than a single network. In fact, different networks have
different prediction capabilities. Therefore, if they are ensembled together (e.g., based on
an averaging/majority-voting output or a more complex aggregation strategy), they may
improve lichen detection. This may be also achieved by distilling several interconnected
Student networks to reach a single, lighter final Student network.

If sufficient labeled data are available, it is generally recommended to use the maxi-
mum input size fitting to the GPU memory when splitting a given image. However, due to
the use of a small label map, one of the most important limitations in this study was the use
of small image patches (i.e., 64 by 64 pixels) for training the Naïve-Student networks. Such
an input size caused both of the Teacher and Student networks to be unable to extract more
useful, representative contextual features in deeper encoding layers of the networks. We
also found a shallower U-Net(++) less accurate than the one used in this study, although
this improvement could have been more significant if larger image patches were used.
If the likelihood of having more untraceable noise and uncertainty as well as training
new, complex networks can be justified, one way of mitigating this problem could be to
use Generative Adversarial Networks (GANs) to either synthesize more image patches
from larger image patches or to improve the resolution of small image patches through a
super-resolution setup.
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