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Abstract: Research on the service values of urban ecosystems is a hot topic of ecological studies
in the current era of rapid urbanization. To quantitatively estimate the ecosystem service value in
Chengdu, China from the perspectives of natural ecology and social ecology, the technologies of
remote sensing (RS) and geographic information system (GIS) are utilized in this study to extract the
land use type information from RS images of Chengdu in 2003, 2007, 2013 and 2018. Subsequently,
a driver analysis of the ecosystem services of Chengdu was performed based on socioeconomic
data from the last 16 years. The results indicated that: (1) from 2003 to 2018, the land utilization in
Chengdu changed significantly, with the area of cultivated lands, forest lands and water decreasing
remarkably, while the area of construction lands dramatically increased. (2) The ecosystem services
value (ESV) of Chengdu decreased by 30.92% in the last 16 years, from CNY 2.4078 × 1010 in 2003 to
CNY 1.6632 × 1010 in 2018. Based on a future simulation, the ESV is further predicted to be reduced
to CNY 1.4261 × 1010 by 2033. (3) The ESV of Chengdu showed a negative correlation with the total
population, the urbanization rate and the per capita GDP of the region, indicating that the ESV of the
studied region was inter-coupled with the socioeconomic development and can be maintained at a
high level through rationally regulating the socioeconomic structure.

Keywords: urbanization; remote sensing; land use change; ecology; driver analysis

1. Introduction

Ecosystem services refer to the natural environmental conditions and effects that
humans rely on for survival, which are formed and maintained by ecosystems and their
ecological processes [1]. It is often difficult to obtain a clear understanding of the impor-
tance and abundance/scarcity of ecosystem service functions only from the perspective
of amount of substance [2]. Ecosystem service values refer to the values of life support
products and services, provided directly or indirectly through the structure, process and
functions of the ecosystem. The calculation of ecological service value provides a scientific
basis for evaluating the quality of human life and production, the level of social sustainable
development and green Gross Domestic Product (GDP), with important practical signif-
icance and scientific value. The quantitative evaluation of ecosystem service values for
improving the public’s awareness of ecological and environmental protection is gradually
becoming a major research topic [3].
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Since the 20th century, one of the biggest changes in human society is urbanization.
On the one hand, maintaining a city requires the consumption of a large amount of natural
resources. On the other hand, due to the increasing urban population, there is an increase
in land degradation, pervasive ground water contamination and intensive greenhouse
gas (GHG) emissions [4], and a large volume of waste is discharged from the city into the
surrounding environment [5].

Until now, studies conducted on the relationship between urbanization and ecosystem
services have mainly focused on the impacts of urbanization on ecosystem services and the
correlation between the two [6], e.g., how urbanization affects ecosystem services provided
by water ecosystems, soil ecosystems [7], agroforest ecosystems [8], cultural ecosystems [9],
and urban ecosystems [10]. The balance and collaboration between ecosystem services and
social interaction and well-being have also attracted significant attention [11]. For example,
Aguilera et al. [12] found that ecosystem services are compromised by progressive loss
of natural connectivity and poor governance structure, which confer high vulnerability
to urbanized bays with future urban expansion. Natasha et al. [13] analyzed the cities
in Vhembe of South Africa and discussed the relationship between urbanization and
forest restoration and its impact on the diversity of ecosystem services and the value of
ecological restoration. Four key ecosystem service functions were quantified and analyzed
to evaluate the impact of Beijing-Tianjin-Hebei urbanization on ecosystem services from
2000 to 2010 [14]. As for the temporal and spatial dynamics of urban ecosystem services, [15]
assessed the impact of the urbanization of Bornova on the potential ecosystem services of
urban and rural areas based on the existing spatial mapping method of potential ecosystems.
However, in the studies on the correlation between urbanization and ecosystem services,
the focus is mainly laid on the regulation of ecosystem services by urban planning, as well
as the bidirectional interactions between urbanization and ecosystem services.

In the aspect of studies on ecosystem services for natural elements, Costanza et al.
evaluated the ecosystem service value on a global scale in 1997 and gave specific functional
classifications of ecosystem services [16]. Andersson-Sköld et al. raised six key questions
in the review of urban ecosystem services and conducted related studies [17]; Ranta et al.
analyzed the ecological impact of palm land on urban green space and greening so as to
study the impact of palm land on urban ecosystem services [18]. Yongxiu et al. proposed
this study of the four-quadrant model of human activities on the ecosystem service func-
tions of the Qinghai-Tibet Park in 2020, which is helpful to explore the impact of human
activities on ecosystem services [19]. Rawat et al. proposed the impact of vegetation and
soil characteristics on ecosystem services [20], and Schirpke et al. proposed the relevance of
land use changes on ecosystem services from the past to the future [21]. Lin et al. modified
the method according to the actual conditions in China, and established a table of service
equivalent factors per unit area of China’s terrestrial ecosystem [22]. Via comprehensively
utilizing technologies including geographic information system (GIS) and remote sensing
(RS), Affek et al., based on the characteristics of land use changes in Longquanyi District
from 2003 to 2014, used Costanza’s method for estimating the ecosystem service value to
estimate the changes in the ecosystem service value in Longquanyi District [23]. Using
Landsat TM RS images and including forests and grasslands and their impacts on the
ecosystem service value [24], Vaz et al. used the entropy method to evaluate the urbaniza-
tion level of oasis-type cities, and obtained the correlation between the urbanization level
and the ecosystem service value [25]. Song et al. used GF-2 RS data to study the ecosystem
service value of water system corridors in central Beijing [26].

In terms of social ecosystem services, current researchers mainly employ ecological
economics methods for studies, such as the shadow project method and the market price
substitution method. Sherrouse et al. used such methods as cost substitution and shadow
project to quantitatively analyze six ecosystem services in Qingdao, namely environmental
purification, employment value, import and export trade, water conservation by green
space, medical treatment, and solid oxygen release [27]. Nikodinoska et al. [28] combined
biophysical, economic value and spatial analysis to evaluate the values of ecosystem
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services in Uppsala, Sweden. Lopes et al. comprehensively used the principles of ecological
economics to estimate the values of urban mountain ecosystem services, and realized the
currency and capitalization of ecosystem services [29]. Xu, Chao et al. [30] quantified
the values of ecological services of Shenzhen and Hong Kong based on the unit value
quantification method, and compared the responses of the ecosystem services of coastal
cities and island cities to urban-rural transformation.

The intensified human daily production and life style drive rapid changes in land
use patterns, which in turn influence the stability of ecosystem structural patterns and
functional benefits. Future research, therefore, needs to be directed toward several aspects,
including a more scientific and reasonable assessment of the ecosystem service value, the
effect and intensity of socio-economic and policy factors affecting their spatial and temporal
patterns, the construction of ecological security patterns based on the assessment results,
as well as the attention to certain special regions and spatial units.

Contemporarily, the majority of studies in terms of urbanization and ecosystem ser-
vices in China are concentrated on the central cities of the socially and economically
developed regions located in eastern and central China. With the continuous acceleration
of urbanization in Chengdu, a large decline in ecosystem service functions of urban ecosys-
tems has been expected. This study evaluated and predicted the impact of the land use land
cover changes on the urban ecosystem services in Chengdu city. The objectives of this study
are: (1) detecting major drivers of the changes in land utilization categories; (2) calculating
and predicting the ecosystem services value (ESV) by 2033; (3) combining with population
and economy indicators to analyze the driving forces of the changes in ESV. Our results
are expected to provide quantitative information which will assist in making decisions on
the protection of natural environmental elements and enhancing urban sustainability in
Chengdu, as well as providing insights into other cities with similar characteristics globally.

2. Data and Methods
2.1. Overview of Studied Area

Chengdu, (102◦54′~104◦53′E, 30◦05′~31◦26′N), is located on western Sichuan Plain
in central Sichuan Province, China. Its terrain slopes from the northwest to the southeast,
and the surface altitude varies from 331 m to 4914 m, showing the characteristics of high
altitude in the northwest and low altitude in the southeast. Chengdu is adjacent to Deyang
in the northeast, Neijiang in the southeast, Ya’an in the southwest, and Aba Tibetan and
Qiang Autonomous Prefecture in the northwest. Western Chengdu is a marginal area of
Sichuan Basin, which is dominated by steep hills and mountains. Eastern Chengdu is
mainly composed of plains, platforms and some low mountains and hills, which is the
heartland of Chengdu Plain. The maximum distance from east to west is 192 km, and
the maximum distance from north to south is 166 km. Chengdu covers a total area of
12,400 km2. The overall schematic diagram of the studied area is shown in Figure 1.
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Figure 1. Location of the study area.

2.2. Data Source and Preprocessing
2.2.1. Data Source

The data sources used in this study were remote sensing image data and socioeco-
nomic data. The remote sensing image data were Landsat 8 OLI and Landsat 7 ETM
+ images, obtained from the United States Geological Survey EarthExplorer website
(https://earthexplorer.usgs.gov/). As three Landsat scenes are needed to cover the entire
city of Chengdu, 12 Landsat images in total (three each from 2003, 2007, 2013 and 2018)
were downloaded, and the specific information is given in Table 1. Moreover, the main
data of the average purchasing price of grains were from statistical data in the China
Yearbook of Agricultural Price Survey (compiled by the National Bureau of Statistics,
http://www.stats.gov.cn/), and the socioeconomic data for the driver analysis were from
the Statistical Yearbooks of Chengdu from 2003 and 2018 (on the sharing platform of China
Statistical Yearbook, https://www.yearbookchina.com/).

Landsat Level1T data were selected for the experiment, which have been corrected by
system radiation and ground control points, and topographic correction via digital eleva-
tion model (DEM). To take advantage of Landsat’s rich spectral information, the ENVI5.3
FLAASH Atmospheric Correction Module was used to complete atmospheric correction.

https://earthexplorer.usgs.gov/
http://www.stats.gov.cn/
http://www.stats.gov.cn/
https://www.yearbookchina.com/
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Table 1. Remote sensing image information.

Time Line and Column Number Sensor Type Imaging Date

2003
129,039 Landsat 7 ETM+ 27 January 2003
130,038 Landsat 7 ETM+ 19 February 2003
130,039 Landsat 7 ETM+ 19 February 2003

2007
129,039 Landsat 7 ETM+ 19 September 2007
130,038 Landsat 7 ETM+ 19 April 2007
130,039 Landsat 7 ETM+ 19 April 2007

2013
129,039 Landsat 8 OLI 20 April 2013
130,038 Landsat 8 OLI 17 August 2013
130,039 Landsat 8 OLI 17 August 2013

2018
129,039 Landsat 8 OLI 18 April 2018
130,038 Landsat 8 OLI 15 August 2018
130,039 Landsat 8 OLI 19 January 2018

2.2.2. Workflow of Data Processing

The overall processing process of the study is shown in Figure 2.

Figure 2. Schematic representation of quantifying ecosystem service values of Chengdu city based
on remotely sensed products.

Combining the image and inventory data, the overlay analysis tool in the spatial
analysis function of ArcGIS 10.3 software was used to intersect the current status maps of
Chengdu’s land use types in 2003 and 2018. Based on the spectral response characteristics
of each band, the Gram–Schmidt fusion method was used for image fusion processing. Con-
sidering that a Support Vector Machine (SVM) has good generalization ability, especially in
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a small sample training set, it can achieve much better results than other algorithms. The
SVM with radial basis function was used to classify the images. We analyzed and predicted
land use/cover in Chengdu to derive the ecosystem value.

(1) Interpretation of remote sensing images

Pansharpening of the remote sensing images was carried out using the Gram–Schmidt
Pan approach to obtain remote sensing image data with a spatial resolution of 15 m. The
pansharpened images were mosaicked and then the study area was divided into four
different sample plots. Next, according to the principle of simple random sampling, sample
(training) data were collected from the remote sensing images for five land use/land cover
categories: cultivated land, forest land, water area, construction land and unused land, and
the training sample was evenly distributed on the remote sensing image. These training
data were used to train a support vector machine classifier to generate a map of the study
area, and man–machine interactive revisions were made to the categorized results to obtain
the categorized land utilization map of the four sample plots in the end.

In the end, the categorized land utilization maps of the four sample plots were
mosaicked into a grid map layer to produce the 2003, 2007, 2013 and 2018 categorized
land utilization maps of Chengdu, as shown in Figure 3, and to obtain the area of different
categories of land utilization.

Figure 3. Changes in land use patterns of Chengdu city from 2003 to 2018. (a) Categorized land
utilization map of Chengdu in 2003; (b) Categorized land utilization map of Chengdu in 2007;
(c) Categorized land utilization map of Chengdu in 2013; and, (d) Categorized land utilization map
of Chengdu in 2018.

While considering the high spatial resolution of pansharpened Landsat images, the
validation data can be directly obtained by visual interpretation combined with field
investigation and Google Earth’s high-resolution image.

For image 2003, 184 farmland verification samples, 195 forest land verification samples,
176 water area verification samples, 174 construction land verification samples and 126
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unused land verification samples were randomly acquired by manual visual interpretation
and Google Earth’s high-resolution image. A total of 202 farmland verification samples, 192
forest land verification samples, 180 water area verification samples, 178 construction land
verification samples and 138 unused land verification samples were randomly acquired by
manual visual interpretation and Google Earth’s high-resolution image for image 2007.

For experimental image 2013, 165 farmland verification samples, 188 forest land
verification samples, 177 water area verification samples, 171 construction land verification
samples and 141 unused land verification samples were randomly acquired by manual
visual interpretation and Google Earth’s high-resolution image. A total of 172 farmland
verification samples, 173 forest land verification samples, 211 water area verification
samples, 196 construction land verification samples and 141 unused land verification
samples were randomly acquired by manual visual interpretation and Google Earth’s
high-resolution image for image 2018.

It can be obtained through the statistical calculation that the overall accuracy of image
2003 is 92.5%, and the Kappa coefficient is 0.821. Table 1 shows the specific results. The
overall accuracy of image 2007 is 93.6%, and the Kappa coefficient is 0.856. Table 2 shows
the specific results. The overall accuracy of image 2013 is 91.7%, and the Kappa coefficient
is 0.816. Table 3 shows the specific results. The overall accuracy of image 2018 is 90.7%,
and the Kappa coefficient is 0.834. Table 4 shows the specific results.

Table 2. Natural service function value coefficients. (CNY/hm2).

Function
Type Service Type Farmland Forest

Land Water Construction
Land

Unused
Land Total

Provisioning
services

Food production 1735.00 386.86 1250.45 0.00 7.82 3380.12
Raw material production 390.77 660.39 359.50 0.00 23.45 1434.11
Supply of water resources 2047.61 355.60 12,957.79 0.00 15.63 11,281.40

Regulation
services

Gas regulation 1391.13 2262.53 1203.56 0.00 101.60 4958.82
Climatic regulation 734.64 6279.60 3579.41 0.00 78.15 10,671.81

Environment purification 218.83 1989.00 8675.00 −3955.50 320.43 7247.75
Hydrological regulation 2344.59 4591.50 159,807.52 −9015.20 187.57 157,915.98

Support
services

Soil conservation 812.79 2758.81 1453.65 0.00 117.23 5142.48
Maintenance of nutrient circulation 250.09 211.01 109.41 0.00 7.82 578.33

Biodiversity 265.72 2508.72 3985.81 0.00 109.41 6869.66
Total 6095.94 22,004.01 193,382.10 −12,970.70 969.10 209,480.46

Table 3. Areas and changes of different land use types in Chengdu from 2003 to 2018.

Land Use Type

2003 2018 Change

Area (hm2) Percentage
(%) Area (hm2) Percentage

(%)
Differential

(hm2) Range (%) Dynamic
Degree (%)

Farmland 604,408.01 42.33 370,411.90 25.94 −233,996.11 −38.71 −2.58

Forest land 711,379.31 49.82 703,435.95 49.26 −7943.35 −1.12 −0.07

Water 28,948.07 2.03 21,298.50 1.49 −7649.57 −26.43 −1.76

Construction land 67,327.99 4.72 297,448.65 20.83 230,120.66 341.79 22.79

Unused land 15,829.94 1.11 35,298.32 2.47 19,468.37 122.98 8.20
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Table 4. Transfer matrix of land use change in Chengdu from 2003 to 2018.

Land Use Type

2018

Farmland
(hm2)

Forest Land
(hm2) Water (hm2) Construction

Land (hm2)
Unused Land

(hm2) Total (hm2)

2003

Farmland 9066.98 6030.11 1794.78 50,078.50 357.62 604,408.01

Forest land 267,606.41 143,517.76 5113.31 167,887.60 20,282.94 711,379.31

Water 85,141.76 541,492.02 4513.77 66,972.35 13,259.41 28,948.07

Construction land 3860.19 5848.48 281.39 4733.86 1106.03 67,327.99

Unused land 4736.56 6547.58 9595.26 7776.35 292.32 15,829.94

Total 370,411.90 703,435.95 21,298.50 297,448.65 35,298.32 1,427,893.31

(2) Analysis of changes in land utilization categories

The dynamic degree of land utilization in Chengdu from 2003 to 2008 was first
calculated with the area data of different categories of land utilization to describe the
dynamic changes in land utilization categories in the studied region (Figure 3). Then,
the land use transfer matrix in the period of 2003–2018 was calculated to describe the
conversion of land utilization categories from the beginning to the end of the study period.
In the end, we used the forecasting method to predict the area of different categories of
land utilization in Chengdu by 2033.

The ESV of Chengdu was calculated from three aspects, namely, different categories
of land utilization, different service value types of the ecological system, and different
districts and counties under Chengdu. Then, the ESV by 2033 was estimated by using
the area of different categories of land utilization in Chengdu by 2033, predicted with the
forecasting method.

(3) Analysis on drivers for changes in ESV

Population and economic indicators were then introduced to establish the linear
regression model between the ESV and the socioeconomic factor with the stepwise linear
regression approach.

2.3. Study Methods
2.3.1. Land Use Analysis Method

(1) Dynamic degree of land use

The dynamic degree of land use can be used to describe the dynamic changes of land
use types in a certain studied area, and its essence is the area change of a certain land use
type between the end and the beginning of this study [31]. The method for calculating the
dynamic degree of land use is as follows:

Ds =
S2 − S1

S1
× 1

T
× 100% (1)

where Ds is the single land use dynamics; S1 and S2 are areas of a certain land use type at
the beginning and end of this study (ha); T is the time interval from the beginning to the
end of this study (a).

(2) Land use transition matrix

The land use transition matrix is used to describe the transition of land use types
from the beginning to the end of this study. Through this matrix, the transition direction
and amount of land use can be clearly depicted. In actual operation, it can be obtained by
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the intersection of the land use maps of the beginning and end of this study. Its specific
mathematical form is as follows:

Sij =


S11 S12 . . . S1n
S21 S22 . . . S2n

...
...

...
...

Sn1 Sn2 · · · Snn

 (2)

where Sij is the area transited from a certain land use type i to another land use type j from
the beginning to the end of this study (hm2); n is the number of land use types divided in
the studied area, n = 5 in this study.

(3) Markov forecast method

The Markov forecast method is based on the Markov chain, which forecasts the
changes at various moments (periods) in the future according to the current state of the
event. This method requires “no aftereffect” in the random process, that is, during the
development of the event, each state transition is only related to the state at the previous
moment, and has nothing to do with the state in the past [32–34]. Therefore, this forecast
method is widely used in this study of land use change. Its specific calculation method is
as follows:

π(k) = π(k− 1)× P (3)

where π(k) is the probability of being in a certain land use state at the time k; π(k−1) is
the probability of being in a certain land use state at the time k−1; P is the state transition
probability matrix, and its specific mathematical form is as follows:

P =


P11 P12 . . . P1n
P21 P22 . . . P2n

...
...

...
...

Pn1 Pn2 · · · Pnn

 (4)

Pij =
Ci−j

Si
(5)

where n is the number of states; Pij is the state transition probability from the state i to the
state j; Ci−j is the area transited from a certain land use type i to another land use type j
during the time range of this study (hm2); Si is the area of a certain land use type i at the
beginning of this study (hm2). In addition, the state transition probability matrix satisfies
the following properties: 

0 ≤ Pij ≤ 1 (i, j = 1, 2, . . . , n)
n
∑

j=1
Pij = 1 (i = 1, 2, . . . , n) (6)

2.3.2. Method for Calculating Natural Service Function Value

Based on part of the results of Costanza’s evaluation of the global ecosystem service
value in 1997, Fu et al. synthesized the results of an ecological questionnaire survey
of Chinese professionals, established a table of service equivalent factors per unit area
of China’s terrestrial ecosystem, and obtained a method for calculating natural service
function value that meets the actual conditions in China [35–38]. That is, 1/7 of the
economic value of the annual natural grain output of 1 hm2 farmland with national
average yield is first defined as 1 equivalent factor of ecosystem service value. The specific
calculation method is as follows:
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V0 =
1
7
×

n
∑

i=1

y
M

n
× d (7)

where V0 is the unit ecosystem service value (CNY), y is the total grain output (kg); M is
the total grain-sown area (hm2); n is the time interval from the beginning to the end of this
study (a); d is the purchase price of grain (CNY/kg). In this study, the average purchase
price of grain in Chengdu in 2010 was 1.82 CNY/kg.

Then, based on the actual classification of land use types in Chengdu, the equivalent
factors of the four land use types of farmland, forest land, water and unused land were
revised by referring to the improvement results of Shoyama et al. on the value equivalent
factor per unit area [39]. Among them, farmland corresponds to fields (take the average
value of equivalent factors of dry land and paddy field), forest land corresponds to the
average value of forest and grassland (broad-leaved forest, grassland, shrub and grass, and
meadow), water corresponds to water area (water system), and unused land corresponds
to desert (take the average value of desert and bare land).

Since the effect of construction land on ecosystem service functions is not considered
in the above study, it actually has a certain weakening effect on the natural service function
value. Therefore, the table of ecological service value per unit area of different land use
types in the Miyun Reservoir catchment area obtained by Zheng Kenter et al. and the
study results of the biomass factor of farmland ecosystems in different provinces in China
obtained by Rodríguez-Ortega et al. are referred to in this study [40–43], and amended to
obtain the ecosystem service value of the construction land in Chengdu.

Then, the natural service function value corresponding to the above-mentioned 1
equivalent factor is multiplied by the ecosystem service equivalent factor per unit area
of the first four types of land use in turn to obtain the natural service function value
coefficients of Chengdu, as shown in Table 2.

Finally, the specific natural service function service value can be calculated according
to the following formula:

VN =
n

∑
i=1

m

∑
j=1

Ai × Kij (8)

where VN is the total natural service function value of Chengdu (CNY); n is the land use
type; m is the specific function type, m = 10 in this study; Aj is the area of the land use type
i (hm2); Kij is the coefficient of ecosystem service value j of land use type i (CNY/hm2).

2.3.3. Social Factor Driver Analysis Method

(1) Selection of driver factors

The variation in ESV is affected and limited by many natural and social factors. For
urban areas with a highly concentrated population and economic activities, the social factor
is the main driver for variation in its ecological system. According to relevant studies and
in combination with the actual urban conditions of Chengdu, 15 population and economic
indicators were used for the driver analysis, where the population indicators included
the regional total population X1, the non-agricultural population X2 and the urbanization
rate X3. The economic indicators included the regional GDP X4, the per capita GDP X5,
the per capita cash income of urban residents X6, the primary industry output X7, the
secondary industry output X8, the third industry output X9, the grain yield X10, the total
real estate investment X11, the gross agricultural production growth rate X12, the gross
forest production growth rate X13, the gross livestock production growth rate X14 and the
gross fishery production growth value X15.

(2) Driver analysis method

The urbanization rate is the first driving factor for the ESV. This indicator is a popula-
tion statistical indicator for measuring the urban development of a region, i.e., the propor-
tion of urban population in total population (including agricultural and non-agricultural
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populations). Urbanization is a comprehensive and complicated changing process and in-
volves the migration and moving of population, changes in production and living methods,
changes in industrial and economic structures, etc.

In the driver analysis, software SPSS24.0 was used to establish the correlation analysis
and the regression equation of the indicators selected to study the impacts of the social
factor on ESV variation. The correlation analysis was to conduct double-variable analyses
on the ESV and social factor indicators of the studied region from 2003 to 2018 to take out
factors of a low correlation. On the basis of the correlation analysis, the stepwise regres-
sion was performed with the socioeconomic factor from 2003 to 2018 as the independent
variable and the ESV as the dependent variable to establish the linear regression equation
between the ESV and the socioeconomic factor. The driving mechanism model of the linear
regression equation is as follows:

Ym = aF(xn) + β (9)

where: Ym is the ESV; xn represents the social driver; α and β are the model coefficients.

3. Results
3.1. Cclassification Accuracy Assessment

There are many methods for evaluating the landslide feature extraction results. The
Confusion Matrix is used to verify the accuracy of the interpretation model, in accordance
with the quantitative research needs in this paper [44]. We validated the accuracy of our
classification against a high-resolution image obtained from the Google Earth web-based
portal. The Kappa coefficient was used in the monitoring and categorization of the remote
sensing images. We obtained a general Kappa coefficient over 0.80, implying that the
remote sensing interpretation effect was good, and the data can be used to analyze the
actual changes in land utilization in Chengdu. More information about the selected training
sample, verification sample and the confusion matrix after classification are shown in the
Appendix A. Due to the large number of confusion matrices (a total of 16), the Appendix A
only shows the confusion matrix of the sample plot 1 in 2003.

3.2. Analysis of Land Use Changes in Chengdu

Seen from Table 3, the land use types in Chengdu are mainly farmland and forest land,
which account for 92.15% and 72.4% of the total area in 2003 and 2018, respectively.

In order to study the area transition between the five land use types in Chengdu after
obtaining the areas of various land use types, we calculated the transition matrix of the
five land use types in Chengdu and their spatial transition within this study time frame, as
shown in Table 4 and Figure 4.

From 2003 to 2018, the areas of land use types in Chengdu changed significantly,
mainly concentrated in the decrease in farmland and the increase in construction land.
Among them, the farmland decreased by 233,996.11 hm2, with a change rate of 38.71%,
the dynamic degree was 2.58%, and the transited-out area reached 336,801.60 hm2, most
of which was transited to construction land and forest land; the transited-out areas were
167,887.60 hm2 and 143,517.76 hm2, respectively, accounting for 92.46% of the total transited-
out area. In terms of spatial changes, the spatial changes of farmland were mainly concen-
trated in the central area of entire Chengdu. A large amount of farmland was transited
into construction land, presumably because this part of the area was flat and suitable for
agricultural development.
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Figure 4. Land use conversion. Note: the far stands for farmland, for denotes forest land, con represents construction land,
unu indicates unused land, and wat refers to water.

The following types are forest land and water, and their areas decreased by 47,943.35 hm2

and 7649.57 hm2, respectively, by 6.74% and 26.43%, and the dynamic degrees were 0.45%
and 1.76%. Among the transited-in area of forest land, most of it was transited from
farmland, and the transited-in area reached 143,517.76 hm2, which accounted for 88.62% of
the total transited-in area. Most of the transited-out part of the water is construction land,
with an area of 7776.35 hm2, accounting for 40% of the total transited-out area, which was
mainly distributed in northern Chengdu.

The area of construction land in Chengdu increased sharply, and this area in 2018
was about four times that of 2003. The huge increase in the area of construction land was
mainly transited-in from farmland and forest land, with transited-in areas of 167,887.60 hm2

and 66,972.35 hm2, respectively. In terms of spatial distribution, changes in the spatial
distribution of construction land were scattered in the fringe area of the central region and
the northeastern region, similar to the conclusion drawn by Sannigrahi et al. [45].

The unused land increased by 19,468.38 hm2, a ratio of 122.98%, and the dynamic
degree was 8.20%. Among it, the transition from farmland and forest land accounted for
the vast majority, accounting for 98.1% of the total transited-in area. In terms of spatial
changes, due to the rapid development of the city, although a large amount of unused
land in central Chengdu has been transited into construction land, it is speculated that
the central area is flat and suitable for the promotion of urbanization. As a result, a large
amount of farmland has been shelved and forest land has been cut down to be used as a
reserve for construction land.
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3.3. Estimation of Ecosystem Service Value in Chengdu

Seen from Table 5, from 2003 to 2018, the overall natural service function value in
Chengdu showed a decreasing trend, from CNY 2.4078× 1010 in 2003 to CNY 1.6632 × 1010

in 2018, a decrease of CNY 7.446 × 109, with a change rate of 30.92%. Among the five land
use types, forest land accounts for the largest proportion of the natural service function
value, accounting for more than 50% of the total ecological service value from 2003 to
2018, followed by water, and finally farmland. In the past 16 years, the natural service
function values of forest land, farmland, water, and construction land showed a decreasing
trend, and the project of returning farmland to forest is coordinated with regional economic
development [46–48]. Among them, construction land has always played a negative role for
the natural service function value. From 2003 to 2018, the ecological value of construction
land decreased by 401.20%, indicating that the area of construction land in Chengdu
increased significantly from 2003 to 2018, and the ecological environment of Chengdu was
more severe. The service value of unused land increased by 122.98%. However, due to the
small area of unused land, its natural service function value had little effect, accounting for
less than 1% of the total ecological service value.

Table 5. Ecosystem service value of different land use types of Chengdu from 2003 to 2018.

Land Use Type
Natural Service Function Value Change Rate (%)

2003 2007 2013 2018 2003–2007 2007–2013 2013–2018 2003–2018

Farmland 36.84 44.82 36.69 22.58 21.64 −18.12 −38.47 −38.71

Forest land 156.53 116.81 131.86 154.78 −25.37 12.88 17.39 −1.12

Water 55.98 50.61 78.23 41.19 −9.59 54.57 −47.35 −26.43

Construction land −8.73 −16.65 −17.97 −38.58 −90.68 −7.89 −114.75 −341.79

Unused land 0.15 0.07 0.46 0.34 −53.90 548.01 −25.35 122.98

Total 240.78 195.66 229.28 180.31 −18.74 17.18 −21.36 −25.11

Note: the unit of natural service function value is CNY 108.

From the perspective of the specific types of natural service functions, as shown
in Table 6, the values of food production, environment purification and hydrological
regulation functions decreased significantly from 2003 to 2018. In 2018, they decreased by
31.91%, 82.95% and 50.08%, respectively, compared with that in 2003. The water supply
function is the only one showing an increasing trend, with an increase of CNY 3.63 × 108,
which is speculated to be related to the decrease in the area of farmland and the decrease
in water consumption. However, the water supply service function still has a negative
effect on the service value, which indicates that the situation in Chengdu is still quite
severe in terms of water supply. In terms of specific value, the service value generated by
the hydrological regulation function was the largest from 2003 to 2018, which was CNY
8.706 × 109, CNY 9.601 × 109, CNY 9.362 × 109, and CNY 4.283 × 109 in order. The water
supply function value was the smallest, which was CNY −6.09 × 108, CNY −6.27 × 108,
CNY −5.24 × 108, and CNY −2.46 × 108, respectively.

As shown in Figure 5, in respect of the three ecosystem service categories, the gross
value showed an apparent downtrend and decreased from CNY 2.4078 × 1010 in 2003 to
CNY 1.6632 × 1010 in 2018, a drop as large as 30.92%. The regulating service value took
up a large portion of the gross value, accounting for 72.58% on average. Additionally, the
decreasing trend of the regulating service value was in line with the downtrend of the gross
value, which decreased from CNY 1.7745 × 1010 in 2003 to CNY 1.1107 × 1010 in 2018, a
drop of 37.41%, meaning the regulating service value played a leading role in the ecosystem
gross service value. The proportions of support service and supply service values in the
gross value were small, accounting for 20.79% and 6.63% on average, respectively, and they
decreased slowly by 12.57% and 13.36% from 2003 to 2018, respectively.
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Table 6. Various ecosystem service values of Chengdu from 2003 to 2018.

Function Type
2003 2007 2013 2018

Value Per (%) Value Per (%) Value Per (%) Value Per (%)

Food production 13.60 5.65 15.14 7.74 13.27 5.79 9.42 5.22

Raw material
production 7.17 2.98 6.47 3.31 6.47 2.82 6.18 3.43

Supply of water
resources −6.09 −2.53 −9.77 −5.00 −4.95 −2.16 −2.32 −1.29

Gas regulation 24.87 10.33 22.56 11.53 22.47 9.80 21.36 11.85

Climatic regulation 50.16 20.83 39.68 20.28 43.54 18.99 47.68 26.45

Environment
purification 15.37 6.38 9.38 4.80 11.42 4.98 5.00 2.77

Hydrological
regulation 87.06 36.16 71.88 36.74 93.88 40.95 48.27 26.77

Soil conservation 24.98 10.37 21.01 10.74 22.07 9.63 22.77 12.63

Maintenance of
nutrient circulation 3.05 1.26 2.99 1.53 2.82 1.23 2.44 1.35

Biodiversity 20.62 8.57 16.32 8.34 18.30 7.98 19.52 10.83

Total 240.78 100.00 195.66 100.00 229.28 100.00 180.31 100.00

Note: the unit of ecosystem service value is CNY 108, per means percentage.

Figure 5. Three sub-categories and the total ecosystem service value of Chengdu.

Seen from Table 7, from 2003 to 2018, Jianyang had the highest natural service function
value, with the lowest in downtown Chengdu. Among the changes in service value, in
the sixteen areas, only Xinjin had an increase in ecological service value from 2003 to 2007,
an increase of 71.89%. The values of other areas were decreasing, and among such areas,
downtown Wenjiang had the largest change rate, up to 24.32%. From 2007 to 2013, the
natural service function value increased in downtown Chengdu, Chongzhou, Dujiangyan,
Pengzhou, Wenjiang, Dayi, Jianyang, Qingbaijiang, and Xindu. Downtown Chengdu
had the largest change rate of increase at 109.29%, and Chongzhou had the smallest at
0.92%. Pujiang and Longquan showed a decrease in values. From 2013 to 2018, only
Jianyang showed an increase in natural service function value, by 2.04%, and the values of
the remaining areas decreased. Downtown Chengdu showed the largest change rate of
decrease, up to 3678.46%. From 2003 to 2018, the natural service function value showed an
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increasing trend in Jianyang and Qingbaijiang, with increase change rates of 6.38% and
2.28%, respectively, while that of remaining areas was decreasing.

Table 7. Natural services function values in all districts of Chengdu from 2003 to 2018.

Study Area
Ecosystem Service Value Change Rate (%)

2003 seq 2007 seq 2013 seq 2018 seq 2003–2018

Chengdu
City −0.80 16 −0.86 16 0.08 16 −2.85 16 −257.86

Chongzhou 19.76 7 19.16 7 19.33 7 10.58 7 −46.46

Dujiangyan 23.22 4 23.03 4 23.61 4 19.09 4 −17.80

Jintang 21.05 6 21.00 6 20.97 6 20.02 2 −4.92

Pengzhou 26.32 3 23.16 3 23.82 3 19.16 3 −27.19

Pujiang 13.77 8 11.79 9 6.70 10 5.56 9 −59.64

Qionglai 28.49 2 27.12 2 24.82 2 15.95 6 −44.03

Wenjiang 3.70 13 2.80 12 3.07 14 1.11 13 −70.04

Xinjin 4.91 11 8.44 11 7.66 9 1.88 12 −61.70

Dayi 22.86 5 22.25 5 22.98 5 16.63 5 −27.27

Janyang 44.17 1 41.23 1 46.05 1 46.99 1 6.38

Longquan 8.94 10 8.55 10 5.96 11 3.53 10 −60.56

Pixian 3.58 14 3.40 14 2.88 15 −1.07 14 −129.98

Qingbaijiang 3.20 15 3.01 15 4.41 12 3.28 11 2.28

Shuangliu 13.39 9 12.96 8 11.39 8 8.48 8 −36.70

Xindu 4.15 12 3.41 13 3.63 13 −2.00 15 −148.18

Total 240.74 // 230.45 // 227.37 // 166.32 // −30.91

Note: the unit of ecosystem service value is CNY 108, seq means sequence.

The natural breakpoint method was used to classify the ecosystem service value,
which is a statistical method to classify and categorize the data according to the statistical
distribution of values, and it maximizes the difference between classes. As shown in
Figure 6, the ESV of Chengdu from 2003 to 2018 presented a circled characteristic in
terms of spatial distribution, i.e., being lower at the center and higher at the periphery,
and varied in different directions. The low-value concentration areas have expanded
structurally in the last 15 years, i.e., urban roads were taken as low-value extension routes
to spread to the districts and counties in the 2nd circle, such as Longquanyi, Shuangliu,
etc. In the meantime, the service values were gradually fixed in a circular distribution and,
with the downtown area as the core, derived from the “low-medium-high-high” to the
“low-low-medium-high” gradient structure. This structure was deployed with the main
urban development direction as the axis and with urban–rural fringes as the fast structural
variation zones, showing the fringe effect in the evolution process of the urban ecosystem.

As shown in Table 8, according to the Markov forecast method, the area of each land
use type in Chengdu in 2033 can be forecast, and it is forecast that the total natural service
function value in Chengdu in 2033 will be CNY 1.4621× 1010, a decrease of CNY 3.41 × 105

compared to that in 2018.
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Figure 6. Distribution map of ecosystem service value in Chengdu from 2003 to 2018. (a) Spatial distribution of the ESV in
Chengdu in 2003; (b) Spatial distribution of the ESV in Chengdu in 2007; (c) Spatial distribution of the ESV in Chengdu in
2013; and, (d) Spatial distribution of the ESV in Chengdu in 2018.

Table 8. Forecast of the ecosystem service value of Chengdu in 2033.

Land Use Type Area (hm2) Percentage (%) Ecosystem Service Value

Farmland 278724.77 19.52 16.99

Forest land 632413.95 44.29 139.16

Water 25844.87 1.81 49.98

Construction land 463922.54 32.49 −60.17

Unused land 26987.18 1.89 0.26

Total 1427893.31 100 146.21

Note: the unit of ecosystem service value is CNY 108.

3.4. Analysis on Drivers for Changes in ESV

The regression model of drivers for changes in the ESV of Chengdu was obtained
through stepwise linear regression, as shown in Table 9 below. The regression model
indicated that, among the 15 social driving factors selected in the study, the ESV and
regional total population of Chengdu X1 (population factor), the urbanization rate X3
(population factor) and the per capita GDP X5 (economic factor) showed an apparent
negative correlation.
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Table 9. Chengdu ecosystem service value regression model.

Ecosystem Service Value Regression Model

Total service value Y = −300.683X1 − 2.724× 108X3 − 1.465× 104X5 − 4.380× 1010

Supply services value Y1 = −7.906X1 − 7.162× 106X3 − 385.228X5+1.996× 109

Regulation services value Y2 = −269.445X1 − 2.441× 108X3 − 1.312× 104X5+3.566× 1010

Support services value Y3 = −23.332X1 − 2.114× 107X3 − 1.137× 103X5+6.146× 109

The urbanization of Chengdu has developed rapidly in recent years, and the urban
development spatial strategy principally expressed as “advancing in the east, expansion in
the south, controlling in the west, reform in the north and optimization in the center” was
formally proposed in April 2017. The fast urbanization process is generally accompanied
by a surge in urban construction lands and the loss of large areas of farmland and forest
ecosystems, which will certainly result in a reduction in the ESV.

The per capita GDP is the second driving factor for the ESV. This indicator is used
to calculate the regional GDP realized in a calculation period (generally a year) against
the gross population of the region to present the regional economic conditions in a more
objective way. The average growth rate of the per capita GDP of Chengdu in the last
15 years was around 13%. Fast economic development is also accompanied by the fast
consumption of resources and strong changes in the categories of land utilization, resulting
in a decrease in ESV.

The regional total population is the third driving factor for the ESV. This indicator can
reflect the consumption of ecological resources in a region. From 2003 to 2018, the total
population of Chengdu was always maintained over 10 million and kept a growing trend.
In general, the larger the population is, the more remarkable the consumption of various
resources would be, thus reducing the ESV of the region.

4. Discussion

Chengdu is an important central city in western China and an important gateway hub
for the “Belt and Road” and the Yangtze River Economic Belt. In this study, Chengdu is
taken as an example, and its values of ecosystem services are estimated from the perspec-
tives of natural ecology and social ecology, based on the remote sensing interpretation data
of four phases of 2003, 2007, 2013 and 2018, and socio-economic data from 2003 to 2018.
In addition, the Markov model is used to forecast Chengdu’s natural ecological service
function value in 2033 and establish a unary linear regression model to analyze the driving
effect of economy and population indicators in the social and ecological service function
values. Unlike previous works, this study proposed methods to determine evaluation
factors and evaluation systems to calculate the ecosystem service values of economically
developed cities. Different conditions are set to analyze the development trend of func-
tional areas. It not only enriches the study of ecological service functions theoretically, but
also guides the construction of ecological cities.

Chengdu is located in the Sichuan Basin, it is cloudy all year round and there are few
available images. In addition, Chengdu is located in the mid and low latitude region, and
the seasonal variation of vegetation is relatively small. The experimental design did not
consider the possible influence of annual change information on the results. The results
of the accuracy test also show that the experiment has good accuracy and high reliability.
A notable increase in forest land can be observed in the southeast region of Chengdu city,
due, in part, to the revegetation program conducted by the local government, including the
natural forest protection project and the cropland re-vegetation project. Accordingly, the
synthetic project report, namely as the year book of forest resources and ecosystem services
of Chengdu city, can help support this finding, which stated that the forest coverage
increased by 39.1% during the past five years.
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In terms of the estimation of natural service function value, the calculation method
improved by Lyver on the successful study of Costanza et al. is mainly adopted in this
paper. As for different land use types, in this method, 1/7 of the economic value of the
annual natural grain output of 1 hm2 farmland with national average yield is first defined
as 1 equivalent factor of ecosystem service value to obtain the table of natural service
function value coefficients. It is convenient and quick to calculate the natural service
function value on this basis. However, it is necessary to correct the coefficients when
studying different studied areas, considering the regional heterogeneity and the complexity
of the ecosystem itself. In addition, since the impact of urban land use on natural service
functions is not taken account in this method, the correlation coefficient is obtained in this
paper by reversely modifying the data [49].

The Markov process can effectively forecast the future land use structure under the
current land use change trend. However, land use is subject to multiple impacts such as
national policies [50], human activities [51], natural disasters, and climate changes. The
complexity and difficulty of forecasts are significant. This requires in-depth discussion and
gradual improvement. In this paper, the significant increase in the area of construction
land is only seen from the land use changes, while urbanization factors such as urban
expansion are not further analyzed. Comprehensive analysis can be considered for urban-
ization factors such as farmland reduction, urban expansion, and changes in ecosystem
service value.

5. Conclusions

In this paper, we deployed a detailed evaluation of ESV in the response of urbanization
induced land-use/land-cover (LULC) change for the big city of Chengdu, China. Based on
the land use data and socio-economic data interpreted by Landsat remote sensing products,
the ecosystem service values during the 16 years from 2003 to 2018 are estimated from
the perspectives of natural ecology and urban ecology. The natural service function value
in Chengdu in 2033 is also forecast, and the driving effects of society and population
indicators on the social service function value are analyzed. After taking out data with
colinearity and with a low correlation with ecosystem services through relevant analyses,
social indicators of a high correlation were used in the stepwise regression analysis of
the ESV of Chengdu, and both the model and the related parameters to be estimated
reached a remarkable level. Among the 15 social population and economic driving factors,
the ESV and regional total population, the urbanization rate and the per capita GDP
showed an apparent negative correlation. This indicates that the negative economic effect
caused by urban development can be effectively mitigated through rationally adjusting the
spatial distribution of industries, optimizing and upgrading the industrial structure and
strengthening the control over construction lands. In this study, the relationship between
LULC and ESV was explored using relatively coarse resolution Landsat satellite imageries.
Although the table of ecological service value per unit area of China’s terrestrial ecosystems
recently formulated by relevant researchers is adopted in this paper, the difference in the
spatial distribution of value coefficients and quality factors suitable for this area still needs
to be investigated and studied, and how to comprehensively consider the impact of urban
ecosystems on natural service functions still needs further studies.
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Appendix A

Table A1. Number of Training Samples in 2003.

Training Sample in 2003 Sample Plot1 Sample Plot2 Sample Plot3 Sample Plot4

cultivated land 50 31 36 33

forest land 32 42 47 39

water area 36 50 28 44

construction land 48 35 40 38

unused land 22 22 32 27

Table A2. Number of Training Samples in 2007.

Training Sample in 2007 Sample Plot1 Sample Plot2 Sample Plot3 Sample Plot4

cultivated land 64 36 48 33

forest land 37 28 41 47

water area 27 37 32 17

construction land 34 28 29 21

unused land 24 22 25 23

Table A3. Number of Training Samples in 2013.

Training Sample in 2013 Sample Plot1 Sample Plot2 Sample Plot3 Sample Plot4

cultivated land 29 44 36 31

forest land 26 51 41 42

water area 30 48 44 37

construction land 32 28 40 31

unused land 32 19 35 22

Table A4. Number of Training Samples in 2018.

Training Sample in 2018 Sample Plot1 Sample Plot2 Sample Plot3 Sample Plot4

cultivated land 35 36 39 42

forest land 40 48 36 27

water area 29 57 59 45

construction land 34 33 36 32

unused land 27 22 29 30
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Table A5. Number of Verification Samples in 2003.

Verification Sample
in 2003 Sample Plot1 Sample Plot2 Sample Plot3 Sample Plot4

cultivated land 60 40 39 45

forest land 45 50 52 48

water area 39 52 35 50

construction land 50 40 45 39

unused land 25 30 35 36

Table A6. Number of Verification Samples in 2007.

Verification Sample
in 2007 Sample Plot1 Sample Plot2 Sample Plot3 Sample Plot4

cultivated land 70 39 53 40

forest land 45 44 52 51

water area 42 53 36 49

construction land 50 40 43 45

unused land 35 36 35 32

Table A7. Number of Verification Samples in 2013.

Verification Sample
in 2013 Sample Plot1 Sample Plot2 Sample Plot3 Sample Plot4

cultivated land 36 52 40 37

forest land 39 55 46 48

water area 36 50 47 44

construction land 48 35 50 38

unused land 39 31 42 29

Table A8. Number of Verification Samples in 2018.

Verification Sample
in 2018 Sample Plot1 Sample Plot2 Sample Plot3 Sample Plot4

cultivated land 40 40 45 47

forest land 45 51 42 35

water area 32 63 69 47

construction land 65 50 39 42

unused land 32 34 36 39
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Table A9. Confusion Matrix of the Sample Plot1 in 2003.

Sample Plot1 in 2003 Cultivated Land Forest Land Water Area Construction Land Unused Land Total

cultivated land 1856 102 3 6 0 1967

forest land 36 2014 2 9 0 2061

water area 24 26 84 14 4 152

construction land 54 214 7 110 7 392

unused land 34 100 6 2 36 178

total 2004 2456 102 141 47 4750

Table A10. Confusion Matrix of Image 2003.

Image 2003 Cultivated Land Forest Land Water Area Construction Land Unused Land Total

cultivated land 7424 408 12 24 0 7868

forest land 144 8056 8 36 0 8244

water area 96 104 335 53 16 604

construction land 216 856 28 440 28 1568

unused land 136 400 24 8 144 712

total 8016 9824 407 561 188 18,996

overall precision% 92.5

Kappa coefficient 0.821

Table A11. Confusion Matrix of Image 2007.

Image 2007 Cultivated Land Forest Land Water Area Construction Land Unused Land Total

cultivated land 5126 250 15 258 1 5650

forest land 196 7083 14 87 5 7385

water area 325 39 251 36 35 686

construction land 190 457 15 2796 10 3468

unused land 124 927 3 152 234 1440

total 5961 8756 298 3329 285 18,629

overall precision% 93.6

Kappa coefficient 0.856

Table A12. Confusion Matrix of Image 2013.

Image 2013 Cultivated Land Forest Land Water Area Construction Land Unused Land Total

cultivated land 5611 360 4 65 8 6048

forest land 301 7460 7 53 7 7828

water area 265 450 175 79 13 982

construction land 36 693 3 1985 11 2728

unused land 713 23 13 98 152 1000

total 6926 8986 202 2280 191 18,585

overall precision% 91.7

Kappa coefficient 0.816



Remote Sens. 2021, 13, 207 22 of 24

Table A13. Confusion Matrix of Image 2018.

Image 2018 Cultivated Land Forest Land Water Area Construction Land Unused Land Total

cultivated land 4026 205 10 102 5 4348

forest land 200 7936 5 203 3 8347

water area 125 57 236 25 26 469

construction land 36 160 3 3469 25 3693

unused land 606 1051 34 234 402 2327

total 4993 9409 288 4033 461 19,184

overall precision% 90.7

Kappa coefficient 0.834
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