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Abstract: The novel coronavirus pandemic (COVID-19) has brought countries around the world
to a standstill in the early part of 2020. Several nations and territories around the world insisted
their population stay indoors for practicing social distance in order to avoid infecting the disease.
Consequently, industrial activities, businesses, and all modes of traveling have halted. On the other
hand, the pollution level decreased ‘temporarily’ in our living environment. As fewer pollutants are
supplied in to the hydrosphere, and human recreational activities are stopped completely during
the lockdown period, we hypothesize that the hydrological residence time (HRT) has increased
in the semi-enclosed or closed lake bodies, which can in turn increase the primary productivity.
To validate our hypothesis, and to understand the effect of lockdown on primary productivity in
aquatic systems, we quantitatively estimated the chlorophyll-a (Chl-a) concentrations in different
lake bodies using established Chl-a retrieval algorithm. The Chl-a monitored using Landsat-8 and
Sentinel-2 sensor in the lake bodies of Wuhan, China, showed an elevated concentration of Chl-a.
In contrast, no significant changes in Chl-a are observed for Vembanad Lake in India. Further analysis
of different geo-environments is necessary to validate the hypothesis.

Keywords: hydrological residence time (HRT); lake; COVID; waterbodies

1. Introduction

The residence time is a fundamental descriptor in hydrology that provides information on the
timescales of a molecule of water spend in a specific system. Hydrological residence time (HRT)
is estimated as the amount of time the water spent in any section of the connected network [1].
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The longer a parcel of water remains in a specific system (river, lake, ponds, etc.), the longer is its
residence time, and vice versa. HRT has got important applications in a wide range of hydrological
fields including water quality analysis, stratification, habitat ecology, age dating, water mixing and
circulation, microbiological contaminants, etc., [2–4]. For example, Zwart et al. [4] showed that lakes
with short HRT had higher dissolved organic carbon and greater net heterotrophy. Hein et al. [5] and
others noticed that a prolonged residence time increases the primary productivity in aquatic systems.
Similar observations have been noticed in several other works. For instance, León et al. [6] reported
that chlorophyll-a was directly related to the HRT. Stumpner et al. [7] showed that zones of longer
HRT (15–60 days) have higher Chl-a concentrations, and ones of shorter HRT (1–14 days) have lower
Chl-a concentrations.

The SARS-CoV-2, or popularly the Coronavirus Disease 2019 (COVID-19) that affected the world
population in early 2020, caused several nations and territories to a stand-still. Over 25 million infected
persons and more than 860,000 deaths have been reported worldwide caused by the COVID-19 as of 1
September 2020 [8]. Since no vaccine or cure has developed to protect the body against the COVID-19,
complete or partial lockdown has been induced in many countries and territories to stop the chain of
infection. As vehicular movement halts, construction is put on hold, and industries stop production,
the levels of pollution level has come down both in atmosphere and hydrosphere [9,10].

The industrial sewage input to the lakes through inlets, recreational activities in lakes such as
boating, fishing, etc., stopped temporarily in aquatic systems during COVID-19-induced lockdown.
We hypothesize that the hydrological residence time in closed or semi-enclosed lakes has increased,
which may, in turn, increase the primary productivity. To validate our hypothesis and to understand
the effect of lockdown on primary productivity in aquatic systems, this study explores to quantify
the level of Chl-a before and during the lockdown period using remote sensing techniques. Chl-a
derived from OC3 algorithm [11] is selected for comparing the eutrophication status before and during
the lockdown.

While, the hydrological residence time is not the only factor that influence the primary productivity,
other factors such as temperature, increased light exposure, oxygen level, initial nutrients levels,
etc., also could cause an increase or decrease in the level of Chl-a concentration in the aquatic
environments [12–14]. For instance, Castelao et al. [15] using geostationary satellite data showed the
seasonal development of coastal upwelling in which the maximum was peaked in the summer and
minimum during the winter. In oligotrophic waters, maximum phytoplankton production often occurs
near the top of a nutricline [16]. In addition, in inland water bodies the intensity of monsoon rainfall
and landscape heterogeneity tremendously influenced the Chl-a concentrations [17]. Further, in places
of upwelling areas, the water surface temperatures are often cooler than nearby waters, resulting in an
increased chlorophyll concentration. However, we assume in this study that the boundary conditions
remain unchanged during the observation period for both the study areas and, hence, examined the
effect of HRT on water quality.

2. Study Area

The stringent and biggest of all lockdown was imposed in two places, (i) Wuhan, China,
the epicenter of COVID-19, and (ii) India, where 1.3 billion people have been staying home since
25 March 2020. Hence, we selected some lake bodies in Wuhan city (Figure 1a) and one lake body in
India (Vembanad Lake, the longest freshwater lake in India) (Figure 1b). These lake bodies are also
preferred because of the availability of cloud-free remote sensing images, and expected longer HRT
caused by the stringent lockdown in these areas. Both the selected cases experienced severe pollution
by wastewater disposal, industrial effluents, heavy metal concentration, and micro-plastics before the
lockdown [18,19].
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Figure 1. Location of the study area (a) lakes of Wuhan, China, and (b) Vembanad Lake, India. 
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The amount of water spent in any section of the water body is an important consideration for 
many water quality problems [1]. In general, the regions near the inlet are having less residence time 
than the far places. Further, in a closed water body or semi-closed lakes, the movement of water is 
largely constrained, therefore having longer residence time. Dickman, [20] showed that increased 
water residence time more likely increases the algae bloom, especially for small reservoirs. Several 
other works showed that Chl-a increases with increasing residence time and decreases with 
increasing discharge [21,22]. The hydrological residence time in our study area was expected to 
increase during the lockdown period owing to following reasons: (i) sewage disposal to the lakes has 
completely stopped, causing reduced discharge via inlets, and (ii) all anthropogenic activities, 
including boating has stopped during the lockdown period, causing still waters. The lockdown 
induced by COVID-19 in this ecosystem with a long retention time, thus offering an opportunity to 
study the development of phytoplankton that are otherwise adapted to a turbid environment.  

While HRT has been traditionally measured through dye-tracer experiments in the field or 
estimating the ratio of the volume of the domain of interest to an outgoing flux [23]. Recently, 
physically based hydrodynamic modeling is employed to estimate the residence [24]. In this study, 
we assumed that the HRT is the longest during the lockdown period. 

Figure 1. Location of the study area (a) lakes of Wuhan, China, and (b) Vembanad Lake, India.

3. Data and Methodology

3.1. Theoretical Framework

The amount of water spent in any section of the water body is an important consideration for
many water quality problems [1]. In general, the regions near the inlet are having less residence time
than the far places. Further, in a closed water body or semi-closed lakes, the movement of water is
largely constrained, therefore having longer residence time. Dickman, [20] showed that increased water
residence time more likely increases the algae bloom, especially for small reservoirs. Several other
works showed that Chl-a increases with increasing residence time and decreases with increasing
discharge [21,22]. The hydrological residence time in our study area was expected to increase during
the lockdown period owing to following reasons: (i) sewage disposal to the lakes has completely
stopped, causing reduced discharge via inlets, and (ii) all anthropogenic activities, including boating
has stopped during the lockdown period, causing still waters. The lockdown induced by COVID-19 in
this ecosystem with a long retention time, thus offering an opportunity to study the development of
phytoplankton that are otherwise adapted to a turbid environment.

While HRT has been traditionally measured through dye-tracer experiments in the field or
estimating the ratio of the volume of the domain of interest to an outgoing flux [23]. Recently,
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physically based hydrodynamic modeling is employed to estimate the residence [24]. In this study,
we assumed that the HRT is the longest during the lockdown period.

3.2. Image Acquisition and Data Processing

Landsat 8 OLI images and Sentinel-2 images of the immediate pre-lockdown period (December 2019
and January 2020) and during the lockdown period (February–April 2020) were downloaded (Table 1)
from the United States Geological Survey (USGS) website (earthexplorer.usgs.gov). All scenes had
undergone terrain correction within prescribed tolerances. Table 1 shows the details of satellite images
used in this study for Chl-a mapping. The Level 1 Landsat-8 and Sentinel-2 images were further treated
using ACOLITE software for radiometric calibration (Top of Atmosphere Reflectance) and atmospheric
correction (Surface Reflectance). ACOLITE, developed by Royal Belgian Institute of Natural Science,
employs a “dark spectrum fitting” (DSF) approach [25,26] for atmospheric correction. For detailed
procedure on atmospheric correction for Landsat-8 OLI in an ACOLITE environment, readers are
referred to the following references [27,28]. For validation purpose, we used the satellite images of
2017–2019 March–April images. The validation dataset was directly used in Google Earth Engine
(GEE) platform with the help of chlorophyll index algorithm [14]. The GEE codes are provided in the
Supplementary File S1.

The variability in the meteorological conditions during the study period may affect the chlorophyll
concentrations. While the regional air temperatures were increasing from December to April by about
10◦ Celsius for Wuhan, the average temperature difference was only about 2◦ Celsius for Vembanad
region (source: https://www.timeanddate.com). The precipitation condition was normal for both case
areas with occasional rainy days observed during the study period (Figure 2).
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Table 1. Details of the satellite images used for mapping chlorophyll-a (Chl-a) before and during the
lockdown period in 2020.

S. No Wuhan Lakes Vembanad Lake

1
ID:
LC08_L1TP_123039_20191207_20191217_01_T1
Acquisition Date: 2019-12-07, Path: 123 Row: 39

ID: LC08_L1TP_144053_20200228_20200313_01_T1
Acquisition Date: 2020-02-28, Path: 144, Row: 53

2
ID: L1C_T50RKU_A023910_20200120T030612
Acquisition Date: 2020/01/20, Tile Number:
T50RKU

ID: LC08_L1TP_144053_20200315_20200325_01_T1
Acquisition Date: 2020-03-15

3 ID: L1C_T50RKU_A024053_20200130T030534
Acquisition Date: 2020/01/30

ID: LC08_L1TP_144053_20200331_20200410_01_T1
Acquisition Date: 2020-03-31

4
ID:
LC08_L1TP_123039_20200209_20200211_01_T1
Acquisition Date: 2020-02-09

ID: L1C_T43PFL_A024755_20200319T051246
Acquisition Date: 2020/03/19, Tile Number: T43PFL

5 ID: L1C_T50RKU_A015788_20200315T030729
Acquisition Date: 2020/03/15

ID: L1C_T43PFL_A015918_20200324T052110
Acquisition Date: 2020/03/24

6 ID: L1C_T50RKU_A024768_20200320T030130
Acquisition Date: 2020/03/20

D: LC08_L1TP_144053_20200331_20200410_01_T1
Acquisition Date: 2020-03-31

7 ID: L1C_T50RKU_A025054_20200409T030244
Acquisition Date: 2020/04/09

ID: L1C_T43PFL_A016061_20200403T052351
Acquisition Date: 2020/04/03

8
ID:
LC08_L1TP_123039_20200413_20200422_01_T1
Acquisition Date: 2020-04-13

ID: LC08_L1TP_144053_20200416_20200423_01_T1
Acquisition Date: 2020-04-16

9 ID: L1C_T50RKU_A025340_20200429T030455
Acquisition Date: 2020/04/29

10
ID:
LC08_L1TP_123039_20200429_20200509_01_T1
Acquisition Date: 2020-04-29

3.3. Chlorophyll-a Retrieval

The reflectance ratio of blue and green wavelengths in the electromagnetic spectrum was recognized
to correlate well with the distribution of chlorophyll in surface waters [29–31]. Several studies have
supported the usage of blue-green bands on the assumption that any changes in these wavelengths
are driven by changes in phytoplankton concentrations [32,33]. The performance of blue-green
ratioed algorithms for retrieving Chl-a was tested independently in different environments [34–38].
We, therefore, employed the OC3 algorithm [11], which uses the water leaving reflectance (Rrs) in
wavelength 443, 482, and 561 for Landsat 8 (Equations (1)–(4)), and 490 and 560 for Sentinel 2 sensor
(Equations (1)–(3), and (5)). Mathematically, OC3 Chl-a algorithm is expressed as:

ChlOC3 = 10y (1)

y = a0 + a1x + a2x2 + a3 x3 + a4 x4 (2)

x = log10(R) (3)

R =
max(Rrs(443, 482))

Rrs561
(4)

R =
Rrs490
Rrs560

(5)

The coefficients 0.2412, −2.0546, 1.1776, −0.5538, −0.4570 are, respectively, used for a0 to a4

(https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/). The performance evaluation of Chl-a retrievals using
Sentinel-2 data and OCx algorithms based on Acolite was found within the root mean squared

https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/


Water 2020, 12, 2573 6 of 13

logarithmic error (RMSLE) of 1.2–1.3 [39]. In another study, by employing OC3 algorithm for
Indonesian seas, the RMSE of in situ vs. satellite Chl-a was found within the range of 0.04–0.05 [40],
suggesting superior performance of satellite retrievals of Chl-a in aquatic systems.

4. Results and Discussion

4.1. Lakes in Wuhan

Figures 3 and 4a presents the Chl-a concentration maps of lakes in Wuhan for pre-lockdown
(7 December 2019; 20 January 2020), during the lockdown (30 January 2020; 9 February 2020; 15 and
20 March 2020) and post-lockdown periods (9, 13 and 29 April 2020). It can be seen that the mean
Chl-a concentrations were very low in the pre-lockdown period (2.77 and 2.95 µg/L) and immediately
after the lockdown period (2.25 µg/L). By 9 February, the mean concentration gradually increased
to 3.05 µg/L. Note that the lockdown was imposed on 23 January in Wuhan. The peak Chl-a was
observed in the March months (6.57 and 5.88 µg/L), which also corresponds to the peak period of
the quarantine period in Wuhan. The lockdown ended on April 8; the mean Chl-a for April shows a
gradually decreasing trend (5.06, 4.49, and 4.74 µg/L).Water 2020, 12, x FOR PEER REVIEW 7 of 13 
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Vembanad Lake (error bar shows ± standard deviations).

4.2. Vembanad Lake, India

Figures 4b and 5 present the results of Chl-a concentration before (28 February 2020; 15 March
2020; 24 March 2020) and during the lockdown period (31 March 2020; 4 April 2013; 13 April 2013;
16 April 2020). Note that the lockdown started on 25 February in India and was still ongoing during
the study period. Contrary to the former analyzed area, Lake Vembanad does not show any significant
increase in primary productivity during the lockdown period. Nevertheless, the concentration was not
decreased during this period (Figure 4b).
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4.3. Validation

Since there is an ~10◦ celcius increase in temperature from December to April in Wuhan climatology,
it is expected that the Chl-a also increased during this time period. In order to validate the hypothesis
that the increased Chl-a in the lakes of Wuhan during the lockdown period in 2020 is because of the
increased HRT, we monitored the Chl-a for the previous years (2017, 2018, and 2019) during the same
time period. The comparative maps of mean Chl-a for 2020 (March–April) and those of previous years
(2017–2019) during the same time period are presented in Figure 6. It can be seen that the Chl-a during
2020 March–April is the maximum among the study years, especially in the lakes far away from the
city center. This implies that hydrological residence time was maximum in places where the influence
of human activity was minimum and, indeed, strengthen our results presented in Section 4.1.
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April–May months (for simplicity, the chlorophyll index algorithm [14] is used in Google Earth Engine
(GEE) to derive the low to high classes).

5. Discussion and Concluding Remarks

As the pollutant discharges into lakes and human activities (boating and fishing) stopped or
reduced during the COVID-19 lockdown period, we investigated whether the residence time in lakes
also increased in associated with it? We tried to answer the problem mentioned above by analyzing the
primary productivity in the lakes. Reynolds, [41], and others reported that increased residence time
favors Chl-a and biomass accumulation in aquatic systems [7]. In our study, we noticed an elevated
level of Chl-a for the lakes of Wuhan during the initial phase of the lockdown period, followed by a
decreasing trend (Figure 4a). This elevated Chl-a indicates an increased HRT in the lakes of Wuhan.
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The decreasing trend followed by the increase may be because a prolonged HRT can settle down the
surface phytoplankton [42].

On the other hand, the Vembanad Lake in India does not show any significant changes in Chl-a
concentration during the lockdown period. A possible explanation is that the Vembanad Lake is not
a closed lake, unlike the lakes in Wuhan. Seven rivers are draining into it, plus it has an opening to
the Arabian Sea in the north-west, which carries salt water up to 26 km inside the lake during the
high-tide period. Thus, it may be because the discharge from the rivers (without pollutants) and tidal
action cause the HRT to be insufficient for enhancing primary productivity in the Vembanad Lake. It is
noteworthy to mention here that both cases, i.e., Wuhan lakes and the Vembanad Lake, have shown a
significant decrease in suspended particulate matter during the lockdown period [10] (Supplementary
Materials Figures S1 and S2).

One may, though, argue that the increased Chl-a in Wuhan lakes can also be associated with
increased water temperature. However, time series Chl-a maps compared for different years (2017–2020)
show that the year 2020 experienced the maximum value of chlorophyll in the lakes of Wuhan.
This demonstrates that Chl-a concentration during the lockdown has increased in a closed lake
system, i.e., for Wuhan, whereas the Chl-a remains unchanged in an open lake system such as the
one demonstrated for Vembanad Lake in India. The hydrological residence time induced during the
lockdown is by large the influencing factor on increased Chl-a, in that it can describe the prolonged
residence time increases the primary productivity in closed systems.

The Chl-a retrieval using NASA’s OC3 algorithm, however, was not validated in this study with
spatiotemporally matched field-derived measurements of chlorophyll because of stringent lockdown
measures in both cities. However, the capability of OC3 for Chl-a retrieval in inland lakes and
ocean waters in previous studies show a near one-to-one relationship and can be accounted for the
Chl-a variability up to upper 10 m of the water column [43]. In addition, the research framework
also does not incorporate the variability of Chl-a caused by other natural phenomena’s, and the
amount of water contaminant flow into lakes from household wastes, which are usually difficult to
model in satellite-based bio-physical parameter estimations. Nevertheless, the methodology and
results presented in our study can help in understanding the influence of lockdown on water quality
parameters, especially phytoplankton concentrations. Thus, although the research framework can
offer important insights into short-term changes in the hydrosphere, additional analysis incorporating
time-series data, and similar studies in closed lakes in other climatic environments is necessary to
further validate our hypothesis.

Supplementary Materials: The following are available onlsupine at http://www.mdpi.com/2073-4441/12/9/2573/s1,
Figure S1: Decreased suspended particulate matter in different lakes of Wuhan during the lockdown period,
Figure S2: Decreased suspended particulate matter in Vembanad lake during the lockdown period, Text S1: Codes
for chlorophyll index using Sentinel-2 images in GEE.
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