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Abstract: Land use/land cover (LULC) maps are now being used across disciplines for many 
different types of applications, e.g., to analyze urban heat islands or rainfall-runoff dynamics. 
Traditional map accuracy metrics are limited in this regard, as they only assess LULC map thematic 
accuracy. In reality, some types of misclassification lead to larger estimation errors for these specific 
applications. In a previous study, we developed a new map accuracy metric (referred to here as 
“JJ19”) to assess the accuracy of local climate zone maps for urban microclimate analysis. In the 
previous work, we also attempted to reproduce another metric (weighted accuracy (WA)) proposed 
for this purpose, but misinterpreted it due to a lack of methodological information available 
(principally, the lack of a confusion matrix to demonstrate how WA was derived). We sincerely 
thank the authors of Bechtel et al. 2019 for providing more information on WA in response to our 
previous study and are happy to report that we found that the metric is now both reproducible and 
valid. On the other hand, we found some other aspects of Bechtel et al. 2019’s study to be inaccurate, 
particularly their claims regarding the suitability of the JJ19 metric. Finally, we made a minor 
improvement to the JJ19 metric based on Bechtel et al.’s comments. 
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1. Introduction 

Land use/land cover (LULC) maps are now commonly used as the basis for many specific 
applications, e.g., for estimation and modeling of urban heat islands [1,2], forest carbon stocks [3–5], 
and rainfall-runoff dynamics [6,7]. LULC data is also being incorporated into various environmental 
and social indicators (e.g., UN Sustainable Development Goal indicators [8,9]) to help monitor 
progress towards sustainable development at local to global scales. Although this usage of LULC 
data across scientific disciplines and society is encouraging, there is a danger of misinterpreting the 
accuracy of LULC maps for these specific applications. For example, the commonly used overall 



Remote Sens. 2020, 12, 1771 2 of 6 

 

accuracy (OA) metric does not convey a LULC map’s accuracy for a task like above-ground biomass 
estimation, as some types of misclassifications have greater negative impacts than others, while OA 
accounts for all types of misclassification equally. 

The most basic element for assessing LULC map accuracy is the confusion matrix, or error matrix 
[10]. From the confusion matrix, traditional LULC map accuracy metrics (OA, producer’s accuracy, 
and user’s accuracy) as well as application-specific accuracy metrics can be calculated. However, in 
many remote sensing studies, no confusion matrix is provided and only the accuracy metrics 
summarizing the matrix are reported. This lack of a confusion matrix can lead to undue confusion by 
readers over the accuracy of the LULC map and/or how the reported map accuracy metrics were 
calculated (particularly when a new accuracy metric is being introduced), as will be shown in this 
study. 

2. Misinterpretation of Weighted Accuracy Metric 

In Johnson and Jozdani [11], we misinterpreted a map accuracy metric (weighted accuracy 
(WA)) originally presented in in Bechtel et al. [12] (hereafter “B17”). The WA metric was intended to 
convey the accuracy of a local climate zone (LCZ) map [13] (a specific type of LULC map) in 
portraying the local thermal environment. Thus, WA was given as a substitute (or supplement) for 
OA to assess overall LULC map accuracy for this specific application. However, the WA metric could 
not be calculated as the authors had intended, given the information provided in B17.  

In B17, the authors explained that WA was calculated by applying (multiplying) the cells of a 
confusion matrix to a corresponding set of weights, representing the similarity between each pair of 
LCZ types. However, no explanation was given on how WA was derived from the resultant weighted 
confusion matrix. Because WA is a proxy for the map’s general accuracy, we logically followed the 
same procedure as is used to calculate OA based on the confusion matrix, i.e., summing the values 
of the principal diagonal cells in the matrix (i.e., the correctly classified reference samples) and 
dividing the result by the sum of all the values in the matrix [10] (Table 1). The only difference was 
that we used the weighted confusion matrix for this rather than the original unweighted confusion 
matrix (Table 1, “WA; our interpretation”). Indeed, this is a common practice for incorporating other 
types of weights, e.g., the proportional area of different LULC classes within a study site, for the 
calculation of overall map accuracy [10,14]. However, we found that this was not what the authors 
of B17 had intended, as Bechtel et al. [15] revealed that in B17 they had used the sum of all cells in the 
matrix (including the off-diagonal cells), divided by the total number of reference samples, to 
calculate WA (Table 1, “WA; actual”). This is a rather unconventional interpretation of the confusion 
matrix, because the off-principal diagonal cells represent the misclassified reference samples in the 
matrix. Although a more detailed explanation would certainly have helped to convey their 
calculation method, the simplest reason for the irreproducibility of the metric was that no confusion 
matrix had been provided in B17 to demonstrate how WA was derived from the weighted confusion 
matrix. 

Table 1. Method used to calculate weighted accuracy (WA). Values in (a) are multiplied by weights 
in (b) to generate a weighted confusion matrix (c). WA is calculated from the values in (c). Local 
climate zone (LCZ); overall accuracy (OA). 

(a) Original confusion matrix  (b) Class similarity weights  (c) Weighted confusion matrix 
 LCZ1 LCZ2 LCZ3 Sum   LCZ1 LCZ2 LCZ3   LCZ1 LCZ2 LCZ3 Sum 

LCZ1 50 10 5 65  LCZ1 1 0.92 0.83  LCZ1 50 9.2 4.15 63.35 
LCZ2 15 40 6 61  LCZ2 0.92 1 0.92  LCZ2 13.8 40 5.52 59.32 
LCZ3 20 5 50 75  LCZ3 0.83 0.92 1  LCZ3 16.6 4.6 50 71.2 
Sum 85 55 61 201       Sum 80.4 53.8 59.67 193.87 
OA = (50 + 40 + 50)/201 = 0.696             

WA; our interpretation = (50 + 40 + 50)/193.87 = 0.722          
WA; actual = (50 + 9.2 + 4.14 + 13.8 + 40 + 5.52 + 16.6 + 4.6 + 50)/201 = 0.965       

We would like to thank the authors of Bechtel et al. [15] for providing more information on the 
WA metric in response to our previous study [11]. They clearly explained how WA could be 
calculated from the weighted confusion matrix, using several example confusion matrices to 
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demonstrate this. It is now possible for readers to better understand how WA is calculated and to 
reproduce the results. We were also very happy to find that their WA metric was not calculated 
illogically (i.e., not improperly applying greater penalties to misclassifications between more similar 
land use/land cover features), as we had previously reported [11]. Thus, we sincerely welcome this 
contribution of Bechtel et al. [15]. A few issues remain with the WA metric (e.g., the limited 
transparency of the point scheme used), but a critique of the metric is outside the scope of this current 
work. 

3. Responses to the Claims of Bechtel et al. [15] Regarding the JJ19 Metric 

3.1. Points of Disagreement 

Although we acknowledge several contributions of Bechtel et al. [15], some aspects of the study 
were found to be inaccurate, including most of the claims regarding our own proposed map accuracy 
metric [11], which they termed the “JJ19” metric. We previously acknowledged some limitations of 
the JJ19 metric, and indeed all metrics have their own unique pros and cons. However, many of the 
claims made were untrue or unsubstantiated, and, as we explain, the JJ19 metric has several benefits 
for LCZ map accuracy assessment. Most notably, it provides great flexibility, allowing for local 
optimization of its parameters. The full details of the JJ19 metric are provided in Johnson and Jozdani 
[11]. 

The principal claims of Bechtel et al. [15] were that “the JJ19 paper was based on wrong 
assumptions” and “the JJ19 method is not as innovative as claimed”. The JJ19 paper had two main 
objectives. The first was to present the rationale for why LCZ map accuracy assessments should take 
into account the physical characteristics of each LCZ type. This argument, which had not been made 
before, was reiterated in Bechtel et al. [15], helping to confirm our point. The second purpose of the 
JJ19 paper was to present a transparent and adaptable approach for LCZ map accuracy assessment. 
For this, we presented the JJ19 metric, which was calculated based on the typical physical and land-
cover properties of each LCZ type (e.g., the average building height, impervious surface fractional 
cover, and anthropogenic heat flux values of each LCZ type), according to the parameter values given 
in Stewart and Oke [13] (the paper that provided the basis for most subsequent LCZ studies). 
Additionally, we fully acknowledged that the parameter values for each LCZ type may vary from 
one geographic region to another, and the JJ19 metric was designed so that these values could be 
easily adjusted according to the local conditions. As was reported by Bechtel et al. [15], “…a weighted 
accuracy is always related to a specific purpose, and hence its appropriateness requires expert 
judgement”. The flexibility of our method allows expert judgement (local knowledge of LCZ 
characteristics) and/or local field measurements of these parameters to be easily incorporated, and 
thus fulfills this criteria as well. Finally, we followed standard protocol to calculate overall map 
accuracy (wOA) and producer’s/user’s accuracy (wPA and wPA) values from the weighted confusion 
matrix [10,14]. Although we never claimed that the JJ19 method was particularly innovative, for the 
above reasons we argue that it is both supported by sound assumptions and useful in practice. It is 
also clear that the JJ19 method differs substantially from the WA method. 

Most other issues with the JJ19 metric noted by Bechtel et al. [15] were relatively minor. For 
example, they pointed out that the JJ19 metric shows less variation in weights than the WA metric 
because we did not normalize our final derived values to a 0–1 range. Although this is of course easily 
done, it is not clear whether or not it is beneficial. The JJ19 metric was also criticized of “failing basic 
requirements of a weighted accuracy scheme” because it produces a value of 0 if all reference samples 
are misclassified. Actually, it results in an undefined value (0/0) if all reference samples are 
misclassified, but we agree that the JJ19 metric should not be reported if all reference data is 
misclassified (and the LULC map should probably be improved before using it as the basis for any 
subsequent analysis).  

3.2. Point of Agreeement and Suggestion for Improvement of JJ19 Metric  
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There is, of course, the potential to further improve the JJ19 metric, e.g., by incorporating 
additional parameters or modifying the existing parameters. As correctly noted by Bechtel et al. [15], 
one potential problem with the metric is that it does not discriminate between water-dominant (LCZ 
G) and land-dominant LCZs (all other LCZs) as clearly as the WA metric does. To alleviate this, here 
we have suggested adding a new parameter containing the “water fractional cover” of each LCZ 
type.  

Assuming all of the land-dominant LCZs contain roughly the same water fractional cover (e.g., 
~10% or less), which is much less than that of LCZ G (e.g., ~75% or more water fractional cover), the 
normalized parameter values (Pnorm) of LCZ 1-F and LCZ G correspond to 0 and 1, respectively 
(Supplementary Tables S1 and S2). The resultant LCZ class dissimilarity weights (Dij) for our generic 
calculation approach are shown in Table 2. For lack of a better term, here we refer to this improved 
version of the JJ19 metric as JJ20. The full set of LCZ parameter values and equations necessary to 
calculate JJ20 are included in Supplementary Tables S1–S3, so the metric can be calculated 
automatically after the user inputs the values of an unweighted confusion matrix into Table S3. Users 
can also modify the parameters based on local field measurements or expert knowledge to generate 
location specific Dij values. 

Table 2. LCZ class dissimilarity weights (Dij) for the JJ20 metric. 

LCZ  1 2 3 4 5 6 7 8 9 10 A B C D E F G 

1   0.26 0.30 0.23 0.36 0.42 0.42 0.43 0.52 0.35 0.34 0.54 0.59 0.60 0.63 0.69 0.82 

2 0.26   0.10 0.18 0.15 0.22 0.24 0.25 0.32 0.25 0.24 0.34 0.38 0.40 0.41 0.49 0.61 

3 0.30 0.10   0.21 0.18 0.14 0.17 0.17 0.23 0.23 0.27 0.27 0.30 0.32 0.41 0.41 0.53 

4 0.23 0.18 0.21   0.15 0.19 0.32 0.26 0.29 0.28 0.25 0.31 0.35 0.37 0.44 0.46 0.58 

5 0.36 0.15 0.18 0.15   0.07 0.30 0.14 0.17 0.15 0.28 0.19 0.24 0.25 0.29 0.34 0.47 

6 0.42 0.22 0.14 0.19 0.07   0.25 0.08 0.10 0.13 0.31 0.16 0.17 0.18 0.28 0.27 0.40 

7 0.42 0.24 0.17 0.32 0.30 0.25   0.28 0.27 0.37 0.29 0.27 0.24 0.30 0.46 0.34 0.52 

8 0.43 0.25 0.17 0.26 0.14 0.08 0.28   0.13 0.19 0.40 0.24 0.21 0.19 0.24 0.28 0.40 

9 0.52 0.32 0.23 0.29 0.17 0.10 0.27 0.13   0.19 0.29 0.13 0.12 0.08 0.25 0.17 0.32 

10 0.35 0.25 0.23 0.28 0.15 0.13 0.37 0.19 0.19   0.38 0.26 0.28 0.27 0.33 0.36 0.49 

A 0.34 0.24 0.27 0.25 0.28 0.31 0.29 0.40 0.29 0.38   0.21 0.28 0.33 0.48 0.38 0.58 

B 0.54 0.34 0.27 0.31 0.19 0.16 0.27 0.24 0.13 0.26 0.21   0.09 0.16 0.34 0.17 0.40 

C 0.59 0.38 0.30 0.35 0.24 0.17 0.24 0.21 0.12 0.28 0.28 0.09   0.09 0.26 0.10 0.31 

D 0.60 0.40 0.32 0.37 0.25 0.18 0.30 0.19 0.08 0.27 0.33 0.16 0.09   0.18 0.09 0.24 

E 0.63 0.41 0.41 0.44 0.29 0.28 0.46 0.24 0.25 0.33 0.48 0.34 0.26 0.18   0.20 0.33 

F 0.69 0.49 0.41 0.46 0.34 0.27 0.34 0.28 0.17 0.36 0.38 0.17 0.10 0.09 0.20   0.23 

G 0.82 0.61 0.53 0.58 0.47 0.40 0.52 0.40 0.32 0.49 0.58 0.40 0.31 0.24 0.33 0.23   

4. Conclusions 

New metrics are required to describe the accuracy of land use/land cover maps for specific 
applications. Along these lines, Bechtel et al. [15] and Johnson and Jozdani [11] presented new metrics 
for conveying the accuracy at which local climate zone (LZC) maps (a specific type of land use/land 
cover map) depict the local thermal environment. Here, we responded to comments made by Bechtel 
et al. [15] and suggested an improved version of the Johnson and Jozdani [11] method (called “JJ20” 
here).  

Bechtel et al. [15] correctly noted that we misinterpreted their weighted accuracy (WA) metric 
in Johnson and Jozdani [11]. We explained the reason for this misunderstanding, and noted that it 
could have been avoided if a confusion matrix had been provided to show how the WA metric was 
calculated in the original work [12]. Based on this experience, we would like to stress the importance 
of including the confusion matrix in any LULC mapping study (either as a table in the text or 
supplementary file) to help avoid these types of misunderstandings in the future.  

Both the JJ20 method and the WA method presented by Bechtel et al. [15] were found to provide 
valid options for the task of LCZ map accuracy assessment, as they apply greater penalization to 
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misclassification between more physically dissimilar LCZ classes. We recommend future LCZ 
mapping studies to report both metrics in addition to traditional map accuracy metrics, such as 
overall accuracy, producer’s accuracy, and user’s accuracy. That said, further improvements to these 
new metrics, and other alternative metrics for this task, are still needed. Finally, similar approaches 
could be used to develop metrics that convey the accuracy of land use/land cover maps for other 
specific applications. We thank the journal Remote Sensing for providing us a platform for this 
discussion. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/12/11/1771/s1, Table 
S1: Parameter values, Table S2: Dij values, Table S3: JJ20 metric calculation.  
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