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ABSTRACT
Operational monitoring of vegetation and its response to climate
change involves the use of vegetation indices (VIs) in relation to
relevant climatic data. This study analyses the temporal variations
of vegetation indices in response to climatic data (temperature
and precipitation) to better understand the phenological changes
in the Wa-West and Tolon districts of Ghana during 1999–2011.
This study also examines the inter-annual variation of vegetation
indices and lag effects of climate variables (temperature and pre-
cipitation) using simple regression and correlation approaches.
Results indicate that the mean Normalized Difference Vegetation
Index (NDVI) and Normalized Difference Soil Index (NDSI) were sig-
nificantly correlated with the mean temperature, whereby the
value of NDVI increases with a decrease in temperature and value
of NDSI increases with an increase in temperature. On examining
seasonal variations, our findings indicated that the months of
August and September have the highest mean NDVI values. This
study confirms that consistently rising temperature and altered
precipitation patterns have exerted a strong influence on temporal
distributions and productivities of the terrestrial ecosystems of the
Tolon and Wa-West districts of Ghana. Furthermore, this research
demonstrates how vegetation indices can be used as an indicator
to monitor phenological changes in the terrestrial ecosystem.
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1. Introduction

Climate change has significantly affected terrestrial ecosystems and is receiving attention
from scientists and governments (Field et al. 2014). Transient climate change will signifi-
cantly affect a large portion of the population in developing countries, principally people
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living on agricultural subsistence (Morton 2007). The agriculture sector is characterized
by complex issues and problems, ranging from the macro-economic policy levels to the
micro-economic smallholder farming. The agriculture sector is different from other sec-
tors of the economy due to variability in yield, which depends on various climatic and
soil conditions.

Agriculture in Africa is mainly seasonal and faces high levels of uncertainties because
of poor infrastructure, isolated rural communities, fluctuating market, trade conditions,
climate change, etc. (Stoop and Hart 2005; Rippke et al. 2016; Molekoa et al. 2019;
Vaughan et al. 2019). Due to many agricultural uncertainties, farmers have to optimize
their farming practices. In addition to being alert in optimizing their operations based on
new production and marketing opportunities, farmers also need to consider the timing of
different field operations. The crucial strategies required for proper crop management
include: early planting; close matching between crops and different land/soil types; fre-
quent use of intercrop combinations often on adjacent and transition land; and fine-tun-
ing of the above systems by selecting local varieties with different growth/maturity cycles
(Stoop 2002).

In African countries, sustainable agriculture is the key to food security. However, in
the present scenario of climate change, various climate-related disasters (e.g., flooding and
drought) result both in critical instability and in agriculture production. While the
importance of climate change and its consequences with respect to primary productivity
and overall biogeochemical cycles are well known (Myneni et al. 1997; Imhoff et al. 2000;
Bonan 2002), more studies are required to fully understand how climate change affects
vegetation phenology. Especially for African countries that contribute about 17% of the
global carbon budget, these regions have been identified as one of the most vulnerable
regions to climate change impacts (Adole et al. 2016). Despite this, a limited number of
studies has addressed the phenology and climate trends across Africa, a region which has
a diverse range of vegetation types (Favier et al. 2012). In this context, monitoring the ter-
restrial ecosystems, which include forests and agricultural areas provide useful means to
assess the effect of climate on biological productivity (Menzel et al. 2006). At present,
most studies believe that average temperature and precipitation have an important role in
phenological changes of terrestrial ecosystems (Zhang and Gao 2005).

Remotely sensed vegetation phenological data from satellite images and derived prod-
uctivity indices have been shown to capture responses to climate variations on short and
long time scales (White and Nemani 2006; Hmimina et al. 2013; Avtar, Takeuchi, et al.
2013; Avtar, Suzuki, et al. 2013). They capture seasonality, productivity, and inter-annual
variation principally through an earlier start of season (SOS) and later end of season
(EOS) (Minh et al. 2019), as well as provide an integrated measurement of ecosystem
responses to climatic factors such as temperature, rainfall, and insolation (Jeganathan
et al. 2014; Kobayashi et al. 2016; Li et al. 2017). For example, Jeong et al. (2011) and
Zhou et al. (2016) have shown that vegetation indices derived from satellite data reveal
more realistic estimates of the trends in SOS and EOS. Monitoring vegetation phenology
and productivity based on vegetation indices have a tremendous potential for addressing
the status and change of ecosystems, as well as associated changes in temperature
and rainfall.

A wide dynamic range of vegetation indices (VIs) has been developed for remote quan-
tification of biophysical characteristics of vegetation, seasonality, and inter-annual varia-
tions (Gitelson 2004). These VIs are mostly related to the characteristic properties of leaf
chlorophyll, leaf area, and canopy biomass (Huete et al. 2010; Schaaf et al. 2011). A var-
iety of spectral wavelengths are applicable to produce a multitude of VI equations.
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However, the red and near Infra-red (NIR) portions of the electro-magnetic spectrum are
the most employed wavelength regions. Among the different VIs, Normalized Difference
Vegetation Index (NDVI) proposed by Rouse Jr et al. (1974), soil-adjusted vegetation
index (SAVI) established by Huete (1988), and enhanced vegetation index (EVI) are some
of the most useful indicators of vegetation phenology (Liu and Huete 1995; Xue and Su
2017). However, only a limited number of satellites (e.g., AVHRR) have provided the
source of satellite vegetation index (VI) for phenological mapping. However, with the
release of satellite data products from the Moderate-Resolution Imaging Spectrometer
(MODIS) instrument, the Syst�eme Pour l’Observation de la Terre (SPOT) 4 and 5 satel-
lites and the Landsat series (4 - 8) with improved spatial resolution and revisit cycle have
enabled considerable improvement in phenological research. Most of the large-scale vege-
tation monitoring is based on time-series analysis of NDVI (Beck et al. 2006) and SAVI
(Huang et al. 2013).

Changes in climate forcing are recognized to modify vegetation phenology of the earth
through changes in temperature, precipitation, evapotranspiration, land use, soil condi-
tions, and CO2 concentration. Each of these factors may have different impacts on vegeta-
tion growth. Previous studies showed that temperature and precipitation are the main

Figure 1. Map shows the location of the study area. Clockwise: (a) Wa-West district and (b) Tolon district of Ghana
and field photographs, (c) agriculture area, (d) savanna forest, (e) the Black Volta river, (f) residential area, and (g)
meteorological station.
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indicators used to explain changes in vegetation phenology (Ji and Peters 2004; Chuai
et al. 2013). Various vegetation indices have been used to study climatic effects on
changes in vegetation phenology (Meng et al. 2011; Zhang et al. 2011). The results from
these studies varied because of the differences in topographic and vegetation conditions.
Zhang et al. (2011) reported that NDVI variations were significantly correlated with tem-
perature and precipitation.

Ghana, having a vast forest territory with a rich diversity in species and ecosystems
that covers 34% of the total area of the country (Hall and Swaine 2013), contributes an
integral part to Africa’s carbon budget. Climate-induced changes in the SOS and EOS,
and consequently the length of the growing season, are critical factors contributing to the
observed carbon cycle dynamics. Therefore, it is important to accurately understand the
spatial patterns of the phenological changes and their driving forces. This study is
intended to identify the process to evaluate the effects of climate change on the terrestrial
ecosystem of Ghana. We aim to analyse the relative effects of changes in (1) temporal
variation of Landsat and SPOT-based vegetation indices, as well as changes in precipita-
tion and temperature in the Tolon and Wa-West districts of Ghana; (2) to compare corre-
lations between NDVI with temperature and precipitation; and (3) to discuss the different
trends in seasonal NDVI, NDSI, and the lag effect of climatic variables.

2. Study area

The present study was conducted over two districts of the northern part of Ghana: the
Wa-West and Tolon districts located along the southern coast of the African panhandle,
bordering the Gulf of Guinea that is situated just a few degrees (4–11�) north of the equa-
tor having a tropical climate. The northern part of Ghana is predominantly characterized
by savanna, with some cropland and grasslands in the far north and central parts of the
region. The southwestern portion of the country consists of partly moist evergreen forest
and partly deciduous forest with some urbanization and cropland areas (CIA World
Factbook 2012). Figure 1 shows the location of the study sites and field photographs taken
during the field visit, as well as the collection of meteorological data. The Wa-West and
Tolon districts are situated in the Guinea and Sudan savanna agro-ecological zones
(Boafo et al. 2014). The main tree species in the study area are neem (Azadirachta indica),
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Figure 2. Mean monthly temperature and rainfall pattern of Ghana during 1991-2016.
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baobab (Adansonia digitata), dawadawa (Parkia biglobosa), and shea tree
(Vitellaria paradoxa).

The Wa-West district is considered as a flood-prone area because of overflows from
the Black Volta river, whereas the Tolon district is considered as a drought-prone area.
The rationale for selecting these two districts originates from their common ecological
zones and socio-economic conditions with differences in exposure to the droughts and
floods as well as climate change vulnerability (Boafo et al. 2014). Wa-West and Tolon
have a flatland topography with less variation in elevation. Figure 2 shows the mean his-
torical monthly temperature and rainfall pattern of Ghana. Rainfall and temperature pat-
terns in the study area are highly variable. Average annual rainfall ranges between 935
and 1327mm with the rainy season starting from April and reaching its average max-
imum in the months of August/September. The rainy season is the period of intense
farming activities. The temperature in the study area ranges between 25 �C (minimum) to
31 �C (maximum). The highest temperature is normally recorded in March, and the low-
est in January, respectively.

3. Material and methods

3.1. Satellite data and processing

Due to the free availability and long archive that enable continuous monitoring of the
Earth’s changing land surface and climate, we used Landsat-5 and SPOT-vegetation satel-
lite products to analyse the ecosystem variations in the two districts of Ghana. All cloud-
free Landsat-5 data from 1984–2011 and SPOT derived vegetation data from 1999 to 2012
were used to monitor seasonal changes in the vegetation. Landsat-5 data with 16 days
repeat cycle and 30� 30m spatial resolution were acquired from USGS (https://earth-
explorer.usgs.gov/); whereas SPOT-vegetation images with 10 days composite (maximum-
value) temporal resolution, 1.15 km � 1.15 km spatial resolution, and stretched values
ranging from 0 to 255 were downloaded by the SPOT-vegetation programme (http://
www.vgt.vito.be/. . . . . . . . . . ). SPOT-vegetation based NDVI data were used to

Figure 3. Flowchart of the methodology.
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complement the Landsat results which are lacking continuity because of their limited tem-
poral coverage.

A total of 32 and 31 scenes of Landsat-5 were available for Wa-West and Tolon,
respectively. These Landsat scenes were further preprocessed using standard image pre-
processing techniques including image enhancement, subsetting, and histogram matching
to augment the quality of the image. Due to the limited temporal coverage of Landsat
images, SPOT-vegetation derived NDVI was used. MODIS 16-day composite NDVI prod-
ucts were also used for validating the results. The prime motive to use MODIS data for
validation schema is that they possess enough cloud-free images for the entire study area
for each year because of their daily temporal coverage. MODIS 250m 16-day composite
images between 2000 and 2018 were used for validating the result. MODIS data for
Ghana were downloaded from AppEARS System (https://lpdaacsvc.cr.usgs.gov/appeears. .
. . . . . . . . ). In order to select the growing season period, we chose the 90% quantile of
NDVI for each year. Using r-program, we computed the linear regression of each pixel in
the images between 2000 and 2018. Figure 3 shows the flow chart of the methodology
adopted in this study. Table 1 shows the study area information and total number of pix-
els covered by Landsat, SPOT, and MODIS images in the Tolon and Wa-West districts.

3.2. Meteorological data

Daily average rainfall and temperature data of Ghana were obtained from the Ghana
Meteorological Agency for the period of 1984–2011. Rainfall and temperature data for the
Wa-West and Tolon districts were selected from the available datasets. There was no
meteorological station in Tolon, so we selected data from the closest meteorological sta-
tion in Tamale district. The location of the Wa-west and Tamale meteorological stations
are Lat/Long: 10�0300700N 00�1501200W and Lat/Long: 09�2400200N 00�5002100W, respect-
ively. Selected data has been used to monitor the changes in the vegetation indices with
respect to the changes in climate variables.

3.3. Vegetation indices

To monitor the phenological behaviour of the terrestrial ecosystem, various indices
employing multiple wavelength bands obtained from satellite images have been developed
(Table 2). We used NDVI and NDSI in this study owing to the following reason. While
NDVI emphasized the vegetation properties, NDSI highlights the soil properties (Rogers
and Kearney 2004). Thus, these two indices together highlight the difference between the
strongest and weakest spectral response of an object. NDVI is a normalized ratio of red
(R) and near-infrared (NIR) reflectance and correlates with photosynthetic activity (Rouse
Jr et al. 1974). It has been widely used to monitor the spectral reflectance properties of
vegetation (Delbart et al. 2005; Avtar et al. 2011; Alatorre et al. 2016). Following the same
rationale as the NDVI, the NDSI employs the near-infrared band and short-wave infrared
(SWIR) band instead of using the red band (Rogers and Kearney 2004). Equations (1)

Table 1. Details of the study area and pixels covered by Landsat, SPOT, and MODIS data.

Districts Total Area (km2)
Total Landsat-5
pixels (30 m)

Total SPOT-
vegetation

pixels (1.15 km)
Total MODIS pixels

(250 m)

Tolon 2,949.9 3277,688 1,311 90,522
Wa-west 1,410.5 1567,177 626 61,937
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and (2) show the formula for calculation of NDVI and NDSI.

NDVI ¼ ðNIR� RedÞ=ðNIR þ RedÞ (1)

NDSI ¼ ðSWIR�NIRÞ=ðSWIRþ NIRÞ (2)

SWIR is the reflectance at the shortwave infra-red band, NIR is the reflectance at the
near infra-red band, and Red is the reflectance at the red band. The response of NDVI
and NDSI to temperature and precipitation was analysed with the help of SPSS software.

4. Results and discussion

4.1. Temporal changes in NDVI, NDSI, temperature, and precipitation for Wa-West
and tolon

Figure 4a illustrates the temporal pattern of Landsat-based NDVI and NDSI with respect
to temperature during 1984–2011 in the Wa-West district of Ghana. The NDVI and
NDSI indices indicate that their value did not change significantly until 2006. However,
since 2006, the NDSI values show a weak increasing trend and the NDVI values show a
very weak decreasing trend. These trends indicate a changing pattern in the growing sea-
son in the mid-2000s. It is also noted that the mean temperature during the same period
has increased. However, the increasing trend was not significantly similar to the NDSI
index. Figure 4a also illustrates that the NDVI and NDSI fluctuations correspond well
with the temperature fluctuations. For instance, the growing season’s values for NDVI
during September 1990, July 2001, and September 2002 were relatively high. On the other
hand, the corresponding temperature for the same period is relatively very low. These
fluctuations in NDVI and temperature are consistent with the findings of Chuai et al.
(2013) who analysed growing season NDVI and temperature during 1998–2007 in inner
Mongolia, China. In the case of NDSI, the temperature and NDSI indices increase and
decrease in tandem. The high value of NDSI shows that the surface is exposed to solar

Table 2. Vegetation indices used in this study (yellow color) along with other common satellite derived indices.

Type of index Index Formula References

Vegetation NDVI (NIR – Red) /(NIRþ Red) Rouse Jr et al. (1974)
Soil NDSI (SWIR-NIR) / (SWIRþNIR) Rogers and Kearney

(2004), Takeuchi and
Yasuoka (2005)

Soil and built-up BUb NDBIb – NDVIb where b
indicates binary image
and NDBI ¼ (SWIR-NIR)
/ (SWIRþNIR)

Zha et al. (2003)

Snow NDSI (blue – SWIR)
/ (blueþ SWIR)

Delbart et al. (2005)

Water NDWI NIR – SWIR / NIRþ SWIR Delbart et al. (2005), Xiao
et al. (2009)

Vegetation GVMI (Global Vegetation
Moisture Index)

(NIR þ 0.1) – (SWIR þ0.2)
/ (NIR þ 0.1) þ
(SWIR þ0.2)

(Ceccato et al. 2002)

Vegetation EVI (Enhanced
Vegetation Index)

2.5 � ((NIR– Red/ (NIR þ 6� Red – 7.5 � Blue
þ 1)).

Kaufman et al. (1998)

Vegetation SAVI (Soil Adjusted
Vegetation Index)

(1 þ L) (NIR – Red)
/(NIRþ Redþ L) where
L is soil
adjustment factor

Huete (1988)
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illumination and has less vegetative cover. The NDSI value increases in dry season, which
is evident in Figure 4a.

Figure 4b illustrates the changes in NDVI and NDSI with respect to temperature dur-
ing 1984–2007 in Tolon, Ghana. Unlike the Wa-West district, the NDVI and NDSI do
not show any increasing or decreasing trend over the years 1984–2007 in the Tolon dis-
trict. However, the fluctuations noted in temperature, NDVI, and NDSI are similar in pat-
tern to the Wa-West and other studies (Chuai et al. 2013). Results show that NDVI and
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NDSI have the potential to detect changes in vegetation phenology and soil water content,
thus showing the sensitivity of optical sensors in observing land surface conditions.

Figure 5 shows the pattern of annual changes in precipitation and temperature in the
Wa-West (Figure 5a) and Tolon (Figure 5b) districts of Ghana. We noticed that the pre-
cipitation in Wa-West does not show any decreasing trend with the increasing tempera-
ture (Figure 5a). During the last 25 years, the regional precipitation and temperature in
Wa-West increased slightly. Minimum values of precipitation were observed for the year
1986 and extreme wet years arising from heavy precipitations were also observed during
the study period. Although the temperature of Tolon shows an increasing trend over the
period, the precipitation does not change substantially (Figure 5b). This result is not con-
sistent with other global and regional analyses of precipitation (Ichii et al. 2002; Chuai
et al. 2013). In the context of the study area, Owusu et al. (2008) also analyzsd the spatio-
temporal variability in annual rainfall in Ghana from 1951 to 2000. Their results indicated
the general reductions seen in the precipitation trends over the northern part of Ghana.

From the aforementioned analysis, it can be seen that temperature can have significant
effects on NDVI and NDSI as compared to precipitation in Wa-west and Tolon. The cor-
relation between temperature and Landsat based NDVI and NDSI for both the Wa-West
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Figure 5. Annual changes in precipitation and temperature in the (a) Wa-West and (b) Tolon districts of Ghana.
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and Tolon districts are shown in Figure 6a and 6b. A negative correlation between
temperature and NDVI was observed for both Wa-West (r2 ¼ 0.64, p< 0.01) and Tolon
(r2 ¼ 0.52, p< 0.01). This indicates that the increasing temperature causes a decline in
vegetation growth in northern Ghana. It is obvious that the higher temperature accelerates
evaporation and leads to water scarcity thereby suppressing vegetation growth. The sig-
nificance of the correlation is comparatively higher in Wa-West than in the Tolon district.
Figure 6c and 6d display a significantly positive correlation between temperature and
Landsat-based NDSI in the Wa-West (r2 ¼ 0.71, p< 0.01) and Tolon (r2 ¼ 0.56, p< 0.01)
districts of Ghana. The Wa-West district has comparatively higher significance than the
Tolon district. The differences in significance between Wa-West and Tolon can be
explained by their different growth environments and a difference in their degree of
anthropogenic disturbances rather than species variation. The dominant vegetation type
in Wa-West and Tolon is guinea savanna woodland type. It consists of grasses and tree
species such as Butylosternum paradoxum (Shea tree), Parkia biglolosa (Dawadawa),
Adansonia digitata (baobab), Anarcadium occidentale (cashew), Acacia, Ebony, Neem,
and Mango.

4.2. Seasonal NDVI and rainfall pattern

The effect of precipitation on NDVI may differ according to its growth phase (Piao et al.
2006; Chuai et al. 2013). Therefore, we analysed SPOT VGT-DN based monthly mean
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Figure 6. Temporal variation of Landsat based NDVI (a, b) and NDSI (c, d) vs. ground temperature; (a), (c) Wa-West;
(b), (d) Tolon.
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NDVI with respect to monthly mean rainfall for the past 12 years (1999–2011). A retreat-
ing trend was noticed in the average NDVI for the rainy season (April–September) and
an increasing trend was noticed in the average NDVI for the dry season (October–March)
in the Wa-West district (Figure 7a). For the Tolon district, a very weak increasing trend
was noticed in the average NDVI for both the rainy and dry seasons (Figure 7b). It was
revealed that the annual rate of seasonal NDVI for the dry season increases for both the
Wa-West and Tolon districts. This indicates that the NDVI in each cultivation season
shows a positive correlation with the precipitation of the preceding season, thus suggest-
ing a temporal lag in vegetation response to precipitation. A similar temporal lag was also
noticed by other studies (Ren et al. 2007). We can visualize this temporal lag in Figure 8.
Precipitation causes a decrease in temperature, which may also lead to an increase in
vegetation growth in the rainy season. Therefore, our results indicate a high NDVI value
in the rainy season.

Although considerable precipitation occurred throughout the months of April and
May, the NDVI increases only during the month of June (Figure 8). Furthermore, we can
see that the monthly NDVI reaches its peak in the month of September even though
August receives the highest amount of rainfall. This indicates that the lag time effect is
larger during the spring time precipitation (March-April) than during the summer time
precipitation. It is possible that after sizable precipitation in the beginning of the growing
season, the changes in temperature triggered the increase in NDVI values. Temperature
triggered an increase in NDVI, which had been noticed by other studies (Tanja et al.
2003; Piao et al. 2006). Also, vegetation growth is highly sensitive to temperature (Guo
et al. 2014). The time lag of vegetation responses to climatic factors is noted for both the
Wa-West and Tolon districts at approximately 1 to 2months. Temporal lags in vegetation
responses have been widely observed in different regions ranging from 2weeks to more
than 3months (Los et al. 2001; Piao et al. 2006; Mao et al. 2012; Chuai et al. 2013; Guo
et al. 2014). The 1 to 2month temporal lag in precipitation as revealed in our study is
consistent with the studies of Chuai et al. (2013) and Guo et al. (2014).

4.3. Validation

The results obtained from Landsat and SPOT vegetation indices were validated with
MODIS 250m NDVI data. This is because observations from Landsat data are limited in
each year and mostly come from off season (December – January) with several observa-
tions in other months. Additionally, the average time-series NDVI values in Figure 4a

Figure 7. Seasonal NDVI trends (a) Wa-West and (b) Tolon.
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were about 0.2, which also come from the dry season. Therefore, analysis from these dis-
continuous datasets may be questioned while exploring the inter-annual changes.
Moreover, low NDVI values may be treated as barren soil and be removed in previous
vegetation dynamic studies. Therefore, to discuss about the phenology and seasonal vari-
ability, we performed the linear regression analysis using the growing season NDVI by
selecting a 90% quantile approach from MODIS imagery. The slope of the regression ana-
lysis between 2000 and 2018 for Wa-West and Tolon is shown in Figures 9a and 9c. R-
squared values obtained from the linear regression analysis for these areas are provided in
Figures 9b and 9d. It can be seen from the slope images that the positive slope is domin-
ant for both Tolon and Wa-West. However, R2 values suggest that the changes are insig-
nificant for both regions. These results are in agreement with the Landsat time-
series analysis.

Figure 8. SPOT based monthly mean NDVI vs. mean monthly rainfall for (a) Tolon and (b) Wa-West districts
of Ghana.
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5. Conclusions

This study focused on phenological changes in the Wa-West and Tolon districts of Ghana
and the changing patterns of climatic factors. The results clearly indicated that NDVI and

Figure 9. MODIS derived NDVI linear regression analysis for the period 2000- 2018. (a) and (c) slope of the linear
regression, (b) and (d) r-squared value.
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NDSI maintain a strong relationship with climatic data, i.e., temperature and rainfall.
This study investigated vegetation response to climate change by studying the correlation
between climatic data and vegetation indices. The purpose was to determine how influen-
tial climatic variations are on the NDVI and NDSI. SPOT-based high values of NDVI
were observed in the months of August and September during the rainy season. The
impact of precipitation on NDVI was positive, whereas the impact of temperature on
NDVI was negative. Our results showed that in warm countries like Ghana, temperature
plays a significant role in modulating the seasonal cycle of vegetation. An increase in tem-
perature leads to a decrease in NDVI values. About 1 to 2 months’ time lag of vegetation
response to climatic factors has been noticed in this study.

For future research, we would like to study the different classes of vegetation and their
relationship with climatic variables. This will help in identifying the areas for potential
environmental restoration by implementing climate change mitigation and adaptation pol-
icies. If vegetation parameters with respect to the climate change projections can be simu-
lated, then a new agricultural technique can be developed to supply a constant yield
under climate change scenarios. Therefore, climate-smart agriculture practices will be use-
ful for the public and policymakers.
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Hmimina G, Dufrêne E, Pontailler J.-Y, Delpierre N, Aubinet M, Caquet B, de Grandcourt A, Burban B,
Flechard C, Granier A, et al. 2013. Evaluation of the potential of MODIS satellite data to predict vege-
tation phenology in different biomes: An investigation using ground-based NDVI measurements.
Remote Sens Environ. 132:145–158.

Huang M, Yang C, Ji Q, Jiang L, Tan J, Li Y. 2013. Tillering responses of rice to plant density and nitro-
gen rate in a subtropical environment of southern China. Field Crops Res. 149:187–192.

Huete. A, Didan K, van Leeuwen W, Miura T, Glenn E. 2010. MODIS vegetation indices. In:
Ramachandran B, Justice C, Abrams M, editors. Land remote sensing and global environmental
change. Vol. 11. New York (NY): Springer; p. 579–602

Huete AR. 1988. A soil-adjusted vegetation index (SAVI). Remote Sens Environ. 25(3):295–309.
Ichii K, Kawabata A, Yamaguchi Y. 2002. Global correlation analysis for NDVI and climatic variables and

NDVI trends: 1982-1990. Int J Remote Sens. 23(18):3873–3878.
Imhoff ML, Tucker CJ, Lawrence WT, Stutzer DC. 2000. The use of multisource satellite and geospatial

data to study the effect of urbanization on primary productivity in the United States. IEEE Trans
Geosci Remote Sens. 38:2549–2556.

Jeganathan C, Dash J, Atkinson P. 2014. Remotely sensed trends in the phenology of northern high lati-
tude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sens
Environ. 143:154–170.

GEOCARTO INTERNATIONAL 15

https://www.cia.gov/library/publications/the-world-factbook/geos/gh.html
https://www.cia.gov/library/publications/the-world-factbook/geos/gh.html


Jeong S, Ho C, Gim H, Brown ME. 2011. Phenology shifts at start vs. end of growing season in temperate
vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biol. 17(7):
2385–2399.

Ji L, Peters AJ. 2004. A spatial regression procedure for evaluating the relationship between AVHRR-
NDVI and climate in the northern Great Plains. Int J Remote Sens. 25(2):297–311.

Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L, Ward DE, Menzel WP, Setzer AW.
1998. Potential global fire monitoring from EOS-MODIS. J Geophys Res. 103(D24):32215–32238.

Kobayashi H, Yunus A P, Nagai S, Sugiura K, Kim Y, Van Dam B, Nagano H, Zona D, Harazono Y,
Bret-Harte M. S, et al. 2016. Latitudinal gradient of spruce forest understory and tundra phenology in
Alaska as observed from satellite and ground-based data. Remote Sens Environ. 177:160–170.

Li X, Zhou Y, Asrar GR, Mao J, Li X, Li W. 2017. Response of vegetation phenology to urbanization in
the conterminous United States. Glob Change Biol. 23(7):2818–2830.

Liu HQ, Huete A. 1995. A feedback based modification of the NDVI to minimize canopy background
and atmospheric noise. IEEE Trans Geosci Remote Sens. 33(2):457–465.

Los SO, Collatz GJ, Bounoua L, Sellers PJ, Tucker CJ. 2001. Global interannual variations in sea surface
temperature and land surface vegetation, air temperature, and precipitation. J Climate. 14(7):
1535–1549.

Mao D, Wang Z, Luo L, Ren C. 2012. Integrating AVHRR and MODIS data to monitor NDVI changes
and their: Relationships with climatic parameters in Northeast China. Int J Appl Earth Obse
Geoinform. 18:528–536.

Meng M, Ni J, Zong M. 2011. Impacts of changes in climate variability on regional vegetation in China:
NDVI-based analysis from 1982 to 2000. Ecol Res. 26(2):421–428.

Menzel A, Sparks T H, Estrella N, Koch E, Aasa A, Ahas R, Alm-K€ubler K, Bissolli P, Braslavsk�a O,
Briede A, et al. 2006. European phenological response to climate change matches the warming pattern.
Global Change Biol. 12(10):1969–1976.,

Minh HVT, Avtar R, Mohan G, Misra P, Kurasaki M. 2019. Monitoring and Mapping of Rice Cropping
Pattern in Flooding Area in the Vietnamese Mekong Delta Using Sentinel-1A Data: A Case of An
Giang Province. Ijgi . 8(5):211. Available from: http://www.mdpi.com/2220-9964/8/5/211.

Molekoa MD, Avtar R, Kumar P, Minh HVT, Kurniawan TA. 2019. Hydrogeochemical assessment of
groundwater quality of mokopane area, Limpopo, South Africa using statistical approach. Water. 11(9):
1891. doi:10.3390/w11091891.

Morton JF. 2007. The impact of climate change on smallholder and subsistence agriculture. Proc Nat
Acad Sci. 104(50):19680–19685.

Myneni RB, Keeling C, Tucker CJ, Asrar G, Nemani RR. 1997. Increased plant growth in the northern
high latitudes from 1981 to 1991. Nature. 386(6626):698–702.

Owusu K, Waylen P, Qiu Y. 2008. Changing rainfall inputs in the Volta basin: Implications for water
sharing in Ghana. GeoJournal. 71(4):201–210.

Piao S, Mohammat A, Fang J, Cai Q, Feng J. 2006. NDVI-based increase in growth of temperate grass-
lands and its responses to climate changes in China. Global Environ Change. 16(4):340–348.

Ren J, Liu H, Yin Y, He S. 2007. Drivers of greening trend across vertically distributed biomes in temper-
ate arid Asia. Geophys Res Lett. 34(7):L07707. doi:10.1029/2007GL029435.

Rippke U, Ramirez-Villegas J, Jarvis A, Vermeulen SJ, Parker L, Mer F, Diekkr€uger B, Challinor AJ,
Howden M. 2016. Timescales of transformational climate change adaptation in sub-Saharan African
agriculture. Nature Clim Change. 6(6):605–609.

Rogers A, Kearney M. 2004. Reducing signature variability in unmixing coastal marsh Thematic Mapper
scenes using spectral indices. Int J Remote Sens. 25(12):2317–2335.

Rouse JW, Jr Haas RH, Schell JA, Deering DW. 1974. Monitoring vegetation systems in the Great Plains
with ERTS. NASA special publication. p. 351, 309.

Schaaf C, Liu J, Gao F, Strahler A. 2011. Land remote sensing and global environmental change. Remote
Sens Glob Environ Chang. 11:549–561.

Stoop W. 2002. A study and comprehensive analysis of the causes for low adoption rates of agricultural
research results in West and Central Africa: Possible solutions leading to greater future impacts.

Stoop WA, Hart T. 2005. Research and development towards sustainable agriculture by resource-poor
farmers in sub-Saharan Africa: Some strategic and organisational considerations in linking farmer prac-
tical needs with policies and scientific theories. Int J Agric Sustain. 3(3):206–216.

Takeuchi W, Yasuoka Y. 2005. Development of normalized vegetation, soil and water indices derived
from satellite remote sensing data. J Japan Soc Photogramm Remote Sens. 43(6):7–19.

16 R. AVTAR ET AL.

http://www.mdpi.com/2220-9964/8/5/211
https://doi.org/10.3390/w11091891
https://doi.org/10.1029/2007GL029435


Tanja S, Berninger F, Vesala T, Markkanen T, Hari P, M€akel€a A, Ilvesniemi H, H€anninen H, Nikinmaa E,
Huttula T, et al. 2003. Air temperature triggers the recovery of evergreen boreal forest photosynthesis
in spring. Global Change Biol. 9(10):1410–1426.

Vaughan C, Hansen J, Roudier P, Watkiss P, Carr E. 2019. Evaluating agricultural weather and climate
services in Africa: Evidence, methods, and a learning agenda. Wires Clim Change. 10:e586.

White MA, Nemani RR. 2006. Real-time monitoring and short-term forecasting of land surface phen-
ology. Remote Sens Environ. 104(1):43–49.

Xiao X, Biradar C, Czarnecki C, Alabi T, Keller M. 2009. A simple algorithm for large-scale mapping of
evergreen forests in tropical America, Africa and Asia. Remote Sens. 1(3):355–374.

Xue J, Su B. 2017. Significant remote sensing vegetation indices: A review of developments and applica-
tions. J Sens. 2017:1–17.

Zha Y, Gao J, Ni S. 2003. Use of normalized difference built-up index in automatically mapping urban
areas from TM imagery. Int J Remote Sens. 24(3):583–594.

Zhang G, Xu X, Zhou C, Zhang H, Ouyang H. 2011. Responses of grassland vegetation to climatic varia-
tions on different temporal scales in Hulun Buir Grassland in the past 30 years. J Geogr Sci. 21(4):
634–650.

Zhang WJ, Gao ZQ. 2005. Study on The Response of Vegetation Cover to Precipitation and Temperature
in Central/East Tibetan Plateau [J]. Prog Geogr. 5

Zhou D, Zhao S, Zhang L, Liu S. 2016. Remotely sensed assessment of urbanization effects on vegetation
phenology in China’s 32 major cities. Remote Sens Environ. 176:272–281.

GEOCARTO INTERNATIONAL 17


	Abstract
	Introduction
	Study area
	Material and methods
	Satellite data and processing
	Meteorological data
	Vegetation indices

	Results and discussion
	Temporal changes in NDVI, NDSI, temperature, and precipitation for Wa-West and tolon
	Seasonal NDVI and rainfall pattern
	Validation

	Conclusions
	Acknowledgments
	Disclosure statement
	References


