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Abstract It is more than 4 years since the 2030 agenda
for sustainable development was adopted by the United
Nations and its member states in September 2015. Several
efforts are being made by member countries to contribute
towards achieving the 17 Sustainable Development Goals
(SDGs). The progress which had been made over time in
achieving SDGs can be monitored by measuring a set of
quantifiable indicators for each of the goals. It has been
seen that geospatial information plays a significant role in

measuring some of the targets, hence it is relevant in the
implementation of SDGs and monitoring of their progress.
Synoptic view and repetitive coverage of the Earth’s fea-
tures and phenomenon by different satellites is a powerful
and propitious technological advancement. The paper re-
views robustness of Earth Observation data for continuous
planning, monitoring, and evaluation of SDGs. The scien-
tific world has made commendable progress by providing
geospatial data at various spatial, spectral, radiometric, and
temporal resolutions enabling usage of the data for various
applications. This paper also reviews the application of big
data from earth observation and citizen science data to
implement SDGs with a multi-disciplinary approach. It
covers literature from various academic landscapes utiliz-
ing geospatial data for mapping, monitoring, and evaluat-
ing the earth’s features and phenomena as it establishes the
basis of its utilization for the achievement of the SDGs.

Keywords Sustainable development goals . Geospatial
data and techniques . Geographic information system .

Remote sensing . And indicators

Introduction

The Sustainable Development Goals (SDGs) are a univer-
sal call for action to end poverty, hunger, protect the planet,
and ensure that all people enjoy peace (United Nations,
and Nations, U 2015). The success of the Millennium
Development Goals (MDGs) has encouraged us to achieve
2030’s Agenda for 17 SDGs which lead the world to
prosperity and sustainability. To monitor the progress for
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each goal, a set of quantifiable indicators, targets, and
observable data specific to each goal has been devised
(Tomás et al., 2016). This requires systematic data obser-
vations at the local community level and subsequent deci-
sions, which include the collaboration of various stake-
holders. The United Nations has highlighted issues of data
quality and data collection abilities to optimally measure
various indicators and has emphasized the need for a Data
Revolution to enhance the data quality (Kharas et al.,
2013). Geospatial data is one of the most promising data
sources. It can be applied for monitoring progress in
achieving the SDGs. The role of big data in analyzing
SDG indicators has been discussed byMacFeely (2019). It
has been pointed out that conventional data sources are not
sufficient. Therefore, the possibility of using big data for
SDGmonitoring has been studied. This paper presents the
issues and challenges in compiling SDG indicators. A
review of methods for translating SDG interconnected
goals into a policy action has been given by Breuer et al.
(2019). Here, the existing framework for the conceptuali-
zation of SDGs and the interconnections among the 17
goals is presented. Also, the advantages and limitations of
several used frameworks have been studied. A study by
Allen et al. (2019) presented a novel integrated method to
prioritize SDG targets through study cases from 22 coun-
tries in the Arab region. A multi-attribute decision method
has been adopted for the study basing on the level of
urgency, systemic impact, and policy gap.

The earth observation data gathers information about
the physical, chemical, and biological systems of the planet
that can be detected via remote-sensing technologieswhich
are useful in achieving the SDGs (Masó et al., 2019).
Moreover, in-situ sensors can be installed to measure these
variables at the local scale with a higher frequency. There
are numerous satellite sensors, each with particular char-
acteristics, which are essential tools in monitoring and
visualizing local and global level changes (various
satellite sensors and their characteristics are given in
Appendix Table 1). The RS and Geographic Information
Systems (GIS) techniques utilize satellite data that provides
a synoptic view with global and local coverage at various
spatial resolutions. These approaches, in addition to field
surveying data, can also be used to monitor the impact of
climate change on different components of aquatic and
terrestrial ecosystems (Avtar et al., 2013). The study by
Koch & Krellenberg (2018) pointed out the targets for
SDGs which need to be translated into a national context.
SDG indicators and monitoring systems need to be altered
depending on the national context.

Geospatial data and techniques can be used very effec-
tively for monitoring most of the SDGs. Furthermore, the
scientific results provided through the use of geospatial
technologies can provide a strong basis for policymaking
to promote sustainable development in communities at
local and regional levels (United Nations Secretary
2016). For example, the visualization of indices generated
from census data may indicate the spatiotemporal changes
in poverty (SDG 1: end poverty). Similarly, visualization
of schools, literacy, green space in cities, usage of natural
resources, GHGs emissions over product life cycle, cases
registered against violence, and many more likewise
would help communities in the preliminary survey there-
by to take concrete actions to achieve SDG 1, SDG 4,
SDG 11, SDG 12, and SDG 16, respectively, within the
stipulated time frame. The impact of climate change can be
witnessed in all the sectors from health to the terrestrial
ecosystem. The recent GIS technologies utilizing spatial
statistics for analyzing spatial distributions and patterns can
be used for controlling diseases by monitoring water qual-
ity and sanitation for different areas (SDG 3, SDG 6, and
SDG 14). Geospatial data and techniques can be used very
effectively for monitoring most of the SDGs, but in some
SDGs, it can be used as proxy data. However, the use of
geospatial data is arguably not yet plausible for all SDGs.
The selected SDGs and use of geospatial data and tech-
niques to generate relevant data for monitoring the prog-
ress of various indicators of the goals are illustrated in
Fig. 1. Figure 1 also shows the various RS- and GIS-
based methods for implementing SDGs. In this paper, we
focus on the following goals: SDG 1: no poverty, SDG 2:
no hunger, SDG 3: good health, SDG 6: clean water and
sanitation, SDG 11: sustainable cities and communities,
SDG 13: protect the planet, SDG 14: life below water, and
SDG 15: life on land.

This paper provides a systematic review of the scien-
tific literature concerning the use of geospatial data for
achieving the SDGs. Specifically, this paper highlights:
(i) the various SDG indicators; (ii) which indicators can
be monitored using geospatial data and their progress;
(iii) how to improve the monitoring techniques with
advanced sensors, citizen science, and big data.

Methodology

For this review paper, the following keywords were used
in Google Scholar to gather relevant papers from 2015 to
2019: “Sustainable Development Goals,” “remote sensing
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AND SDGs,” “remote sensing AND GIS AND
SDGs,” “geospatial data AND SDGs,” “monitoring
SDGs,” and “monitoring the progress of SDGs.”
These keywords displayed various literature depend-
ing on various factors such as exact keywords (put in
double quotes), search period (anytime and since
2015), and Boolean operators used (AND, OR,
NOT) as summarized in Fig. 2. Figure 2 shows the
flowchart of literature review to develop this review
paper on the use of remote sensing techniques for
SDGs’ implementation.

Resulting literature was scrutinized in two phases. In
the first phase, only abstracts with relevant keywords were
examined to determine whether to choose the paper for
further analysis or not. To reduce the biases, the first
selection was based on the title of the paper with the
pertinent keywords regardless of the authors’ names and
countries. We prioritized peer-reviewed articles in the first
phase of scrutiny. During the second phase of literature
scrutiny, reports, news articles, book sections, etc. were
also included. A critical appraisal of the selected papers
through the second phase of scrutiny was carried out.
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Fig. 1 Utilization of geospatial data for SDGs (Modified from: Sustainable Development Knowledge Platform)
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Geospatial data for sustainable development goals
(SDGs)

Sustainable development goal 1: no poverty

The spatial information from satellite data can help to
acquire backdated census data at a global scale,

especially for developing countries. The United Nations
has defined seven targets and 14 indicators for SDG-1.
The traditional method to measure poverty relies on
census data, which typically has a repeat cycle of 5 or
10 years as it is difficult to update the data yearly. In
some of the low- and middle-income countries, census
data is unavailable; or if available, it is outdated.
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ar�cles, book 
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Fig. 2 Flowchart of review paper on application of remote sensing techniques to implement SDGs
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Therefore, the use of alternative techniques based on
GIS and mobile mapping can help in updating and
filling up such data gaps (Tatem et al. 2017). The pov-
erty maps based on geospatial data provide information
on inequality within a country and hence divulge the
spatial disparities related to the various indicators of
SDG 1 (Kuffer et al. 2018). These maps are becoming
an important tool for the development of effective pol-
icies, aiming to reduce inequalities within countries by
implementing social protection programs. These pro-
grams include allocating subsidies, effective resource
use, disability pension, unemployment insurance, and
old-age pension. Multi-temporal poverty maps can be
used to see the change in poverty by implementing
social protection programs. The use of geospatial infor-
mation can give information about potential hotspots
where the international community must work together
to reduce poverty. Mobile phone data has also been used
as an indicator of poverty, for example: the use of
monthly credit consumption, the proportion of people
using mobile phones, and movement of mobile phones
(Eagle et al., 2010; Soto et al., 2011). There are numer-
ous studies where GIS tools are leveraged towards
implementing policies to achieve SDGs, some of which
are discussed below.

Gallo and Ertur studied the distribution of regional
GDP per capita in Europe from 1980 to 1995 and found
clear evidence of global and local spatial autocorrelation
(Gallo and Ertur, 2003). Minot & Baulch (2005) inves-
tigated spatial patterns of poverty in Vietnam, which
reveals that most of the poor people do not live in the
poorest districts but in the lowland deltas, where poverty
incidence is intermediate. Therefore, governments
should consider poor people, not poor areas. Kuffer
et al. (2016) reviewed literature related to slum area
mapping using remote sensing data, emphasizing the
role of high-resolution satellite data and object-based
image analysis (OBIA) for robustness across cities and
imagery. Asensio focused on the targeting aspect of
poverty alleviation (Asensio 1997). In this work, census
data were used alongside aerial-photo interpretation
within a GIS environment. Numerous and varied indi-
cators which revolved around unemployment rate,
health-infant mortality rate, ethnicity, educational attain-
ment of female household heads, housing quality, etc.
were used. The level of data aggregation was the build-
ing block. The use of GIS-based poverty maps can
integrate data from various sources in defining and
describing poverty. This can generate reliable poverty

indicators at district and sub-district levels. The applica-
tion of GIS can provide an insightful idea of the census
data, which seems underutilized in developing
countries.

In Indonesia, Poverty Reduction Information System
for Monitoring and Analysis (PRISMA) has been wide-
ly used to conduct spatial analysis of poverty in relation
with other variables in the GIS platform (Sugiyarto
2007). Okwi et al. (2007) mentioned in their study that
acquisition of various thematic data such as slope, soil
type, distance, travel time to public resources, elevation,
type of land use, and demographic variables can be
useful to explain spatial patterns of poverty (Okwi
et al. 2007). Elvidge et al. (2009) derived a global
poverty map using a poverty index calculated by divid-
ing population count by the brightness of satellite ob-
served night time light (DMSP nighttime light data).
They used land cover, topography, population settle-
ment, as well as DMSP nighttime light data and esti-
mated that the numbers of individuals living in poverty
are 2.2 billion, slightly under the world development
indicators (WDI) estimation of 2.6 billion. This infor-
mation can be updated easily with the use of multi-
temporal satellite data. Blumenstock et al. (2016) dem-
onstrated that policymakers in the world’s poorest coun-
tries are often forced to make policies with data insuffi-
ciency especially in the African region (Blumenstock
et al. 2016). Therefore, the use of high-resolution satel-
lite imagery andmachine learning can fill the gap of data
insufficiency. Multi-dimensional poverty index (MPI)
based on mobile call details, ownership, call volume,
as well as satellite-based nighttime light data has been
used in Rwanda with high accuracy (Njuguna &
McSharry 2017). This study shows that mobile and
satellite-based big data can be effectively used for eval-
uating spatiotemporal poverty. The use of high-
resolution satellite data to estimate variation in poverty
across small local areas by analyzing features such as
the density of paved and unpaved roads, building den-
sity, roof types, and farmland types have been conducted
in Sri Lanka (Engstrom 2016). Geospatial data can be
effectively used as a tool to provide updated data as well
as to monitor the progress or growth due to the imple-
mentation of current policies. One study developed a
transfer learning approach using convolutional neural
networks (CNN), where night-time light intensities are
used as a data-rich proxy to predict poverty in Africa
(Xie et al., 2015). This approach can easily be general-
ized to other RS tasks and has great potential to solve
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global sustainability challenges. One of the recent stud-
ies demonstrated how mobile phone and satellite data
can be utilized as a mapping tool for poverty (Tatem
et al. 2017). The findings indicate the feasibility to
estimate and continually monitor poverty rates at high
spatial resolution in countries with limited capacity to
support traditional methods of data collection. Hence, it
can be concluded from the above-discussed literature
review that geospatial techniques are effective means to
reach out to the most vulnerable groups to better execute
the policies aimed at poverty elimination.

Sustainable development goal 2: no hunger

Remote sensing–based estimation of agricultural yield
can be used to avoid hunger. According to the United
Nations Food and Agriculture Organization (FAO),
there is more than enough food produced in the world
to feed everyone. But recent data shows that the esti-
mated number of undernourished people has increased
from 777 million in 2015 to 815 million in 2016 (FAO
IFAD UNICEF, W., and W, 2017). Tackling the hunger
problem is not an easy task and it needs international
cooperation among countries. Knowing the problem of
malnutrition in an area, projecting future crop produc-
tion and water availability could help us to mitigate the
problem in the future since we would make needful
plans in a timely manner. The satellite data can contrib-
ute to achieving the goal of zero hunger by providing
timely data on agriculture yield and market demand
using modeling techniques. The use of unmanned aerial
vehicles (UAVs) in precision agriculture can also sup-
port sustainable agriculture production by precision
farming (Paganini et al. 2018). Nhamo et al. (2018)
studied improving the estimation of irrigated area using
Landsat data in Limpopo province, South Africa with
the use of UAV-based information. Arroyo et al. (2017)
estimated the yield of corn using UAV data aswell as the
optimization of fertilizer use.

RS and GIS could be used to detect key areas strug-
gling to ensure enough food. One study analyzed the
current situation of the distribution of underweight chil-
dren in Africa and found the highest prevalence rate
around the border between Nigeria and Niger, Burundi,
and central/northern Ethiopia (Nubé & Sonneveld
2005). They indicated that the regional characteristics,
as well as national policies and circumstances, play a
role in high causation as well as prevention. Liu et al.
(2008) also analyzed hotspots of hunger along with the

climate change scenario for the subnational level of Sub-
Saharan Africa. The authors found that existing prob-
lems in Nigeria, Sudan, and Angola would be mitigated
by improving the domestic food security situation
through gaining economic power, but some regions in
Tanzania, Mozambique, and DR Congo would face
more serious hunger problems if climate change con-
tinues to progress. Basing on the projections, SDG-2
can be achieved for these countries only if the interna-
tional community could work together to help strug-
gling countries. Geospatial data can be used to forecast
the agricultural yield at the national, regional, and global
levels with the use of ground-based observation and
weather data in a timely and accurate manner. Satellite
data can provide useful information about poor growing
seasons and years of low crop productions. Group on
Earth Observations Global Agricultural Monitoring
(GEOGLAM) is one of the seminal agencies that use
geospatial data for agriculture forecasting. Raising agri-
cultural productivity and climate resilience are neces-
sary to feed the growing population by adopting ad-
vanced technologies (World Bank 2016).

Sustainable development goal 3: good health

Spatial analysis techniques can help in examining
healthcare systems as well as estimating the path of infec-
tious diseases. Improving sanitary conditions such as ac-
cess to clean water is crucial in maintaining good health.
Therefore, SDG-3 is feasible if SDG 6 (clean water and
sanitation) is achieved. It is worth mentioning here that all
the 17 goals of SDGs are not independent, rather, these
goals are interconnected. The WDI data and the World
Water Development Report by UN-Water provide us the
percentage of the population with access to clean water
using GISmaps (United NationsWorldWater Assessment
Programme (WWAP), 2018). The maps show a cluster in
Africa telling that the situation must be improved in the
future for the attainment of SDGs. Similar to its use for
detecting hunger problems, GIS plays an important role in
assisting decision-makers to improve the situation.

In addition to sanitation, maintaining good health
requires access to the healthcare system. GIS can be
used to analyze healthcare conditions nationally and
internationally. One study analyzed the condition of
healthcare in Costa Rica by measuring its spatial access
within the country (Rosero-Bixby 2004). His findings
provide important information to achieve SDG 3 in
Costa Rica because it clearly points out certain
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communities without adequate access to healthcare. To-
gether with other healthcare indicators such as child
mortality rate, if the regional differences are revealed,
the government could intensively allocate the budget
and human resources in areas lagging behind others to
improve the situation for achieving SDG 3. A similar
analysis is useful for Sub-Saharan countries to show the
precise location seeking help from the international
community.

Gaugliardo (2004) studied the situation of the prima-
ry care by measuring the distance to a healthcare facility
and found the differences in accessibility of primary
care in Washington DC. Some areas have more than
70 medical service providers for 100,000 children while
others have less than 20. Wang and Luo (2005) studied
to find areas, which suffered from the shortage of
healthcare workers in Illinois and found that disadvan-
taged areas were widespread all over the state, except
big cities such as Chicago. Both studies implied that GIS
can also be used in medical geography to depict social
inequality in developed countries. Also, improving so-
cial conditions contributes to achieving both SDG 3 and
SDG 10: reduced inequalities.

The effectiveness of GIS is not limited to the general
healthcare system. We could utilize it for epidemiology
studies to prevent future pandemics. Maude et al. (2014)
analyzed the spatial and temporal data on clinical
malaria in Cambodia, and depicted the distribution of
the disease and village malaria workers. Timo Lüge
(2014) prepared a case study to report how GIS was
used to combat the recent Ebola outbreak in Guinea. In
countries like Guinea, it is quite challenging to tackle
communicable diseases because a lot of basic informa-
tion including geographic and social data is missing.
Quick responses are crucial to control outbreaks. A
medical humanitarian organization, Medicine Sans
Frontier, needed to start from collecting geographic
data to know how streets connect residential areas as
well as where the cases were reported. Jones et al.
(2008) studied global temporal and spatial patterns of
emerging infectious diseases (EIDs) and found that the
origin of EIDs is significantly correlated with socio-
economic, environmental, and ecological factors. The
study revealed that the fragile regions due to EIDs in the
world include developed countries, and the risk map
would help us to prepare for future outbreaks. EIDs
include zoonosis, which is common to both humans
and animals. Outbreaks of zoonosis such as avian/
swine influenza, Ebola, and rabies would significantly

impact both human health and national economies, es-
pecially if livestock is a major industry. Preventing
infectious diseases through monitoring is necessary for
SDG-3. With the current trends of global warming and
globalization, the infected area is expanding into new
areas as mosquitos move along with human andmaterial
flows. Therefore, controlling infectious diseases will be
challenging to all countries. The recent outbreak of the
Zika virus in South America has already spread widely
to North America, Europe, and Asia. Furthermore, the
impact of the disease is especially significant for
pregnant women and newborn babies. Therefore, for
SDG 3, analyzing the origin, tracking the outbreak,
and preventing the disease from invasion is an
important process for which GIS is an effective tool.
Orimoloye et al. (2018) studied about changes in land
surface temperature and radiation due to urbanization in
South Africa using Landsat data and radiation risks to
heatstroke, skin cancer, and heart disease (Orimoloye,
Mazinyo, Nel, & Kalumba 2018). Strano et al. (2018)
proposed a tool for supporting the design of disease
surveillance and control strategies through mapping
areas of high connectivity with roads in the African
region (Strano, Viana, Sorichetta, & Tatem 2018).

Sustainable development goal 6: clean water
and sanitation

SDG 6 addresses the issues related to clean water and
sanitation. It has seven targets to be achieved by 2030
ranging from water resources to the hygiene of people.
The application of geospatial techniques like remote
sensing and GIS promises to achieve each of the seven
targets. Target 1 is to achieve universal and equitable
access to safe and affordable drinking water for all by
2030. The study “Assessment of Groundwater Potential
in a Semi-Arid Region of India Using RS, GIS and
Multi-Criteria Decision Making Techniques”
(Machiwal et al., 2011) provides a very good insight to
achieve this target. In this study, the authors proposed a
standard methodology to delineate groundwater poten-
tial zones integrating RS, GIS, and Multi-Criteria Deci-
sion Making (MCDM) techniques. Using each of these
techniques, they have generated a groundwater map and
demarcated four groundwater potential zones as good,
moderate, poor, and very poor based on groundwater
potential index in the Udaipur district of Rajasthan,
Western India. On the basis of hydrogeology and geo-
morphic characteristics, four categories of groundwater
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prospect zones were delineated. Another study in the
drought-prone Bundelkhand region also showed the
importance of RS, GIS, and ground survey data to
identify groundwater potential zones. This study can
be used to address drought mitigation and adaptation
(Avtar et al. 2010).

Target 2 of the SDG 6 is to achieve access to adequate
and equitable sanitation and hygiene for all and end
open defecation paying special attention to the needs
of women, girls, and those in vulnerable situations.
Open defecation is a very common sight in developing
countries due to inaccessibility to infrastructure and
facilities. Various information on land cover and infra-
structure derived from satellite data can be used for
geographical analysis in the planning of infrastructure
development (Paulson 1992). Information like land-
cover derived from satellite imagery combined with
land ownership, slope, soil type, and visibility indicators
in GIS can be used to design infrastructure facilities
(Tatem et al. 2017). These techniques are also important
for assessing the environmental impact and cost of
construction (Kuffer et al. 2018). Another type of appli-
cation is the zoning of cities according to the physical
and socio-economic attributes for infrastructure plan-
ning. The zones can be used for different purposes such
as sanitation and housing. Information about population
density and area can also be used to calculate the ap-
proximate number of users and hence building costs.

The study on water pollution and management in
Tiruchirappalli Taluk (District), Tamil Nadu, India used
IRS LISS-III (Linear Imaging Self Scanning Sensor),
satellite imagery, and SRTM (Shuttle Radar Topography
Mission) data integrated with water level data, canal
inflow, and groundwater condition to generate a map
showing the distribution of water pollution in the area
(Alaguraja et al. 2010). Another study conducted in the
Alabata community (Nigeria), which is a community
without basic infrastructure facilities, revealed the im-
portance of RS-GIS–based techniques in the bacterio-
logical examination of water supply to the rural com-
munities. Data on sanitation, health, water sources, and
water sampling points were taken and plotted in GIS and
a base map was generated in this study. Development of
the RS-GIS system allows the overlapping of the spatial
location of water sources and bacteriological quality
data as well as the generation of a map for the planning
and management (Shittu et al. 2015).

Over-exploitation of groundwater resources can also
be monitored by RS-GIS techniques. The study on

integrated RS-GIS application for groundwater exploi-
tation and identification of artificial recharge sites pro-
vides a very good example to support this argument. In
this study, IRS-LISS-II data and other relevant datasets
were used to extract information on hydro-geomorphic
features of hard rock terrain. This study was conducted
in Sironj area of Vidisha district of Madya Pradesh
(India). IRS-LISS-II data has been integrated with
DEM, as well as drainage and groundwater data analysis
in GIS. This study has helped in designing an appropri-
ate groundwater management plan for a hard rock ter-
rain (Saraf & Choudhury, 1998). Satellite data with
multiple applications can be useful to monitor clouds,
precipitation, soil moisture, groundwater potential, in-
land water bodies, change in the river, surface water
levels, etc. (Paganini et al. 2018).

Target 5 of SDG 6 is protecting and restoring water-
related ecosystems, including mountains, forests, wet-
lands, rivers, aquifers, and lakes by 2020. The
availability of water depends on several factors such as
forests, wetlands, and mountain springs. Therefore,
protecting them and restoring them plays a vital role in
achieving SDG 6. The study was done by Reusing
(2000) on change detection of natural high forests in
Ethiopia using RS and GIS techniques set a very good
example. The author has done a countrywide change
detection analysis of Ethiopia’s natural high forests
using multi-temporal LANDSAT-TM satellite images.
Wetlands are important in mitigating and controlling
floods— a hazard which brings lots of negative impacts
on the poor communities due to the widespread of
waterborne diseases, destroying properties and
agricultural fields. Therefore, restoring and protecting
existing wetlands is a timely necessity and RS and GIS
can be incorporated in this. Rebelo et al. (2009) have
developed a multiple-purpose wetland inventory using
integrated RS-GIS techniques and specific analysis at
different scales in response to past uncertainties and
gaps. Furthermore, they have quantified the conditions
of wetlands along the Western coastline of Sri Lanka
using satellite data and GIS to describe trends in land
use due to the changes in agriculture, sedimentation, and
settlement patterns.

Sustainable development goal 11: sustainable cities
and communities

There has been accelerated progress made on global
spatial data collection and processing because of
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advancements in technologies and computer science.
Therefore, increased investment and technical applica-
tions are needed to expand on the progress being made
to integrate geospatial data into the global goal of
implementing sustainable cities and human settlements.
UN-Habitat is already engaging research institutions to
develop a representative dataset of urban areas that
would make possible the monitoring of urban land-use
efficiency, land-use mix, street connectivity, and other
key factors of sustainable urban development (Habitat
2015). Consequently, adopting SDG 11 is also transfor-
mational in the sense that it targets the sequential prog-
ress of urban planning, the complex provision of public
space, access to basic services, and transportation sys-
tems by the growing population in this digital world of
uncertainties.

United Nations, Nations, U., and United Nations
(1992) emphasized the importance of an integrated ap-
proach to sustainable development, including the need
for quality data and information for decision making
(Lehmann et al. 2017). The high need for geographic
data was then first captured in a global sustainable
development dialog. The report of the summit, under
the “means of implementation” theme called for mem-
ber states to inter-alia: promotion of development and
wider use of earth observation technologies including
satellite RS, global mapping and geographic informa-
tion systems, to collect quality data on environmental
impacts, land-use, and land cover changes, etc. Also, it
echoed urgent action at all levels of data access, explor-
ing the use of geographic information by utilizing the
technologies of satellite RS for further development as
far as urbanization is concerned. How geographic infor-
mation would be applied to sustainable development
challenges or be implemented was not clarified. There
was simply no apex intergovernmental mechanism in
existence that could suitably address the production and
use of geographic information within national, regional,
and global policy frameworks — or how they could be
applied to sustainable development challenges. There
are various sectors in a city that really need the applica-
tion of geospatial information. Acquiring data on these
indicators will contribute a lot to the implementation of
the sustainable cities through SDG 11 achievements by
2030. For example, the application of RS data in waste-
water monitoring can clearly assist us to identify the
flow and can be used as an indicator for monitoring the
proportion of wastewater safely treated (Ulugtekin et al.
2005). There is a similar situation on the population

density, land use, land cover, and many other data
needed for the achievement of SDG 11. If this data is
integrated with other geospatial layer, and administra-
tive data of high-resolution satellite images which can
document the location of treatment facilities in a city,
can help to estimate the wastewater generation potential
as well as their impacts. The use of geospatial data in the
implementation of SDG 11 will contribute a lot to filling
most of the knowledge gaps. It will place many de-
mands on national statistical systems, as well as cost-
effective gains on monitoring in general.

Geospatial information and analysis significantly en-
hances the effectiveness of the SDG 11 indicators in
monitoring and guiding sustainable development from
global to local scales. The value of statistical and geospatial
data compilation for the implementation andmonitoring of
the 2030 Agenda and SDG 11 constitutes an important
basis for the continued collaboration between the
geospatial field andmany other sectors involved in achiev-
ing the implementation of the sustainable cities goal. How-
ever, this will require us not only to promote the use of
statistical and geospatial data as reporting and monitoring
tools for achieving the SDG 11 but to further support
capacity building in the intersection of various disciplines
in a transdisciplinary approach (ISO), O.G. C. (OGC); T. I.
O. for S., And, T. T. C. 211G. information/Geomatics, and
(IHO), I. H. O, 2015).

This review paper has recognized the need for the
global geospatial information community, particularly for
the implementation of SDG 11 through the utilization of
national geospatial information agencies. There is an op-
portunity to integrate geospatial information into the sus-
tainable cities goal in more accurate ways to gather, mea-
sure, andmonitor the targets and indicators of SDG 11. For
example, through an approach called Backcasting, concep-
tually developed to support sustainable decisions in the
energy sector (Haslauer et al., 2012). Backcasting works
backward from the envisioned future goals to the present,
setting milestones to achieve the desired objective. These
milestones are small interim scenarios along the way be-
tween the future scenario (usually 20–50 years ahead) and
the present situation. The use of the Backcasting method-
ology, if implemented in a modeling environment of many
cities, as well as the urban planning process based on GIS
using the scripting language Python will play a major part
in implementing SDG 11. Most importantly, in order to
achieve this outcome, national geospatial information in-
stitutes need to collaborate more with the national statisti-
cal and earth observatory professional communities.
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The governments need to ensure unity between insti-
tutions having similar goals and objectives both at na-
tional and global perspectives. Institutions are required
to deliver the same data, as practical as possible and
depending on national circumstances and functions use-
fulness of the geospatial data in the implementation of
the SDG 11 is concerned. Urban centers/cities contrib-
ute around 80% of global greenhouse gas (GHG) emis-
sions, especially in most developing nations where ur-
ban centers and cities are spaced with no effective
means of urban transport systems. Therefore, sustain-
ability indicators can provide new ideas and solutions to
the planning and expansion occurring globally. The
decisions for sustainable cities planning and manage-
ment should be taken on an evaluation of their conse-
quences. Correspondingly, each strategy needs to design
the right tools of study, analysis, and prediction (Martos
et al. 2016). For this reason, the integration of RS and
geospatial tools like GIS and many modeling and pro-
jection tools will have an effective impact to implement
and monitor achievement of the sustainable city goal.
An urban transport indicator for SDGs has been
discussed by Brussel et al. (2019). It has been argued
that the urban transport indicator has many limitations.
Out of several limitations, the major limitation is supply
oriented. The indicators for this study have been collect-
ed using geoinformation for the city of Bogota in Co-
lumbia. The mapping, modeling, and measurements of
urban growth can be analyzed using GIS- and RS-based
statistical models. While achieving safe, resilient, sus-
tainable cities and communities surely present the global
community with a set of significant social, environmen-
tal, and economic challenges where geospatial informa-
tion can provide a set of science and time-based moni-
toring solutions. As noted at the second session of
United Nations Initiative on Global Geospatial Informa-
tion Management (UN-GGIM) in August 2012, “all of
the issues impacting sustainable development can be
analyzed, mapped, discussed and/or modeled within a
geographic context” (Scott & Rajabifard 2017). The use
of Geo-information will effectively reduce the network
load and the building modeling cost as well. This will
contribute substantially to the achievement of sustain-
able and low carbon cities by saving three quarters of
manpower, time, and cost during the implementation of
most construction projects (Rau & Cheng 2013). A case
study on GIS-based methods for assessing the environ-
mental effects in informal settlements in Cuiaba, Central
Brazil has been carried out by Zeilhofer and Piazza

Topanotti (2008). The reason for the rise in informal
settlements in Cairo, the capital of Egypt, has been
studied by El-Batran & Arandel (2005). The sustainable
informal settlements in Dharavi, Mumbai from India;
Santa Marta favela, Rio de Janeiro from Brazil; Tondo,
Manila from the Philippines have been studied by
Dovey (2015). The author explains that the informal
settlements for shelter and community have risen glob-
ally and are legally unjustifiable. The informal settle-
ments in Kisumu, Kenya have been described by
Karanja (2010). In conclusion, whether collecting and
analyzing satellite images or developing geopolitical
policy, geography provides the integrative approach
necessary for global collaboration and consensus deci-
sion making towards the achievement of SDG 11 on
safe, resilient, and sustainable cities.

Sustainable development goal 13: climate action

The key to understand our dynamic climate is creating a
framework to take many different pieces of past and future
data from a variety of sources andmerge them together in a
single system using GIS (Dangermond & Artz 2010). A
particular technological measure, which was specifically
identified by national development targets and strategies of
most countries all over the world is the use of RS, partic-
ularly on climate monitoring and analysis. For instance,
Indonesia has initiated the development of its National
Satellite Development Programme to aid the application
of satellite RS on the issues of climate change and food
security in the country. Also, countries like the Philippines
are pushing for the capacity building of technical people to
earn needed expertise on the use and application of new
and sophisticated tools such as GIS. It goes without saying
that RS has become a pre-requisite for reliable information
bulletins on climate change which was relied on by deci-
sion-makers. Various pieces of literature pointed out the
following reasons why RS has become a very important
ingredient in climate change study and decision making
related to it:

& Many regions in the world are characterized by the
lack of a dense network of ground-based measure-
ments for Essential Climate Variables (ECVs).

& Some parameters can only be observed from space
or can be observed with better accuracy from space
(e.g., top of atmosphere radiation budget).

& RS provides climate variables with a large regional
coverage up to global coverage.

   35 Page 10 of 21 Environ Monit Assess          (2020) 192:35 

Author's personal copy



& Assimilation of satellite data has largely increased
the quality of reanalyzed data.

& Satellite-derived products have the potential to in-
crease the accuracy of gridded climate datasets
gained from dense ground-based networks.

At present, the application of RS in dealing with the
issue of climate change has been very useful. It is note-
worthy to mention one of the earliest and globally im-
portant contributions of RS in climate change study,
which is the discovery of the ozone hole over Antarctica.
It was discovered by a British scientist and was con-
firmed by the Nimbus-7 Total Ozone Mapping Spec-
trometer (TOMS) launched in 1978. Since then, the
TOMS make maps of daily global ozone concentration.
These data were used as scientific pieces of evidence in
the First Montreal Protocol, where 46 nations agreed to
reduce the use of chlorofluorocarbons (CFCs) by 50%
by 1999. However, like many other great things, it is also
being hurdled by some issues and criticisms including (i)
there are types of data which are not accurate when
downscaled to a more human scale of meters (e.g., while
standing in the field), (ii) requires highly technical ex-
pertise, (iii) involve the use of costly/expensive equip-
ment, and (iv) accuracy is highly dependent on the
source data. This pushed different organizations (i.e.,
NASA, ESRI) to strive for future directions in RS and
global change, including international cooperation,
dataset management, and distributed computing. Recent
developments in RS opened up new possibilities for
monitoring climate change impacts on the glacier and
permafrost-related hazards and threat to human lives and
infrastructure in mountainous areas (Kaab et al. 2006).
Previous studies show the importance of RS and GIS in
the assessment of natural hazards in mountainous re-
gions, therefore, it will play a major role in the sustain-
ability of the region in the near future (Kääb 2002;
Quincey et al. 2005).

Sustainable development goal 14: life below water

This goal addresses the sustainable use and conservation of
oceans, seas, and marine resources. This goal consists of
several targets addressing marine pollution, protection of
marine and coastal ecosystems, minimizing ocean acidifi-
cation, regulating and managing fishing activities,
prohibiting overfishing, increasing economic benefits to
the small island via the sustainable use ofmarine resources,
developing research capacity, and implementing

international laws which support sustainable utilization of
marine resources. Geospatial techniques provide an en-
hanced interface to achieve these targets in numerous
ways. One good example can be taken by the study done
by Dahdouh-guebas (2002). The author has studied the
sustainable use and management of important tropical
coastal ecosystems such as mangrove forests, seagrass
beds, and coral reefs using integrated RS and GIS. He
determined the ecosystem resilience and recovery followed
by an adverse impact using these techniques. The author
stressed that there is a need for more comprehensive
approaches that deal with new RS technologies and anal-
ysis in a GIS environment, and that integrate findings
collected over longer periods with the aim of future pre-
diction. Another study done for seagrass meadows in
North Carolina, USA supports the significance of
geospatial techniques in the sustainable use of the ocean
and its resources. Seagrass meadows are vulnerable to
external environmental changes and they provide a habitat
for coastal fisheries. Therefore, monitoring and conserving
seagrass is key to a healthy ocean environment. Spatial
monitoring of seagrasses can improve coastal management
and provides a change in location and areal extent through
time (Ferguson & Korfmacher 1997).

Oil spills are a common problem in oceans mainly
associated with shipping activities. In recent years, the
frequency of oil spills has increased due to the develop-
ment of marine transportation. Oil spills can significant-
ly affect the primary productivity of ocean and marine
ecosystems including fisheries, marine animals, and
corals. RS-based algorithm has been used widely to
detect oil spills. There is a significant improvement in
the oil spill detection with the use of microwave remote
sensing techniques (Yu et al. 2017). For example,
Satellite-based oil pollution monitoring capabilities in
the Norwegian waters were demonstrated in the early
1990s by using images from the ERS-1 satellite (Wahl
et al. (1994). With the advancement of RS technologies,
Synthetic Aperture Radar (SAR) plays an important role
in oil-spill monitoring (Brekke & Solberg 2005). Arslan
(2018) reported that Sentinel-1 SAR and Landsat-8 data
can be effectively used to highlight the oil spill area.

Global fish production was relatively stable during
the past decade, whereas aquaculture production contin-
ued to rise (Food and Agriculture Organization (FAO)
2012). Both sectors are very important in global food
security and there is an increasing threat to their sustain-
ability. Some of the challenges are overfishing, degra-
dation of keystone species, and climate change. On the
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other hand, aquaculture faces problems like competition
for space, disease outbreak, labor, and impacts of cli-
mate change. The solutions to some of these problems
can involve applying satellite remotely sensed (SRS)
information (Saitoh et al. 2011). RS can be used to
detect ocean temperature, sea surface height anomaly,
ocean color etc. which are very important in operational
oceanography. In pelagic fisheries, there are mainly two
RS applications. One is for the identification of potential
fishing zones, and the other one is for the development
of management measures in order to minimize the catch
of endangered species. For example, Howell et al.
(2008) demonstrated a tool that facilitated the avoidance
of loggerhead turtle (Caretta caretta) by catch, while
fishing for swordfish (Xiphias gladius) and tuna
(Thunnus spp.) in the North Pacific (Howell et al. 2008).

Sustainable development goal 15: life on land

Forest plays a major role in regulating the global carbon
cycle at regional to the global scale. According to theMEA
(2005) report (Finlayson 2016), 335–365 Gigatonnes of
carbon is locked up by forests each year. Any significant
alterations or reduction in the forested area due to any or
many of the following reasons, namely changes in land use
and land cover, the practice of selective logging, forest
fires, pest, and diseases, would definitely lessen the pro-
ductive functioning of the forest. The previous studies
concluded that it is highly important to reduce greenhouse
gas (GHG) emissions from deforestation and forest degra-
dation as a step towards mitigating climate change
(Angelsen et al. 2012; INSTITUTE, M.,, and
MERIDIAN INSTITUTE, 2009).

Climate change is a growing concern that has led to
international negotiations under the United Nations
Framework Convention on Climate Change (UNFCC)
(Sustainable Development Solutions Network (SDSN),
2014). The REDD+ concept emphasizes reducing emis-
sions from deforestation and forest degradation, promot-
ing sustainable forest management, as well as enhancing
carbon sinks are all integrated and regarded as mitigat-
ing GHG emissions. Forest degradation heavily impacts
small communities, who are dependent on the forest as a
source of income and food. Destruction of the forest also
affects soil and water quality in the immediate area and
can adversely affect biodiversity over a range of con-
nected ecosystems. There has been a lot of ambiguity in
the definition of forest degradation. According to FAO
report (FAO 2011), forest degradation has been defined

as changes within the forests which negatively affect the
structure or functions of the stand or site, and thereby
lower the capacity to supply products and/or services.
While REDD+ defines degradation as a long-term loss
(persisting for x years or more) of at least y% of forest
carbon stocks since time T, and not qualifying as defor-
estation which is conversion of forest land to another
land use category. Thus, it is highly essential to decide
the definition, the indicators on the basis of which a
nation’s trajectory towards the achievement of SDGs
could be monitored. Once, the international organiza-
tions decide the common indicators, the phenomenon or
feature can be monitored by geospatial techniques.

Looking into the grave problem that stands right in
front of humanity, is the need to accurately monitor,
map, and estimate the net forest cover, monitor defores-
tation, and degraded forest area and quantify the Above
Ground Biomass (AGB). RS technique which offers
comprehensive spatial and temporal coverage has been
used for the same in past decades. Many types of
research and monitoring programs have been carried
out to map deforestation and forest degradation using
optical RS. For instance, Reddy et al. (2016) quantified
and monitored deforestation in India over eight decades
extending from 1930 to 2013 using grid cell analysis of
multi-source and multi-temporal dataset. The satellite
imageries were acquired from cloud-free Landsat Mul-
tispectral Scanner System (MSS) from 1972 to 1977,
IRS 1A/IB LISS I (1995), IRS P6 AdvancedWide Field
Sensor (AWiFS) (2005), and Resources at-2 AWiFS
(2013) with an overall accuracy of forest cover more
than 89%. Another study by Riitters et al. (2016), who
assessed global and regional changes in forest fragmen-
tation in relation to the change of forest area from 2000
to 2012. The study utilized global tree cover data to map
forest and forest interior areas in 2000 and concluded
that forest area change is not necessarily a good predic-
tor of forest fragmentation change. Thus, we see that
there are still some gaps between our understanding of
the ecological processes and finding using geospatial
techniques. It is required that basic science, technology,
and policy evolve and develop hand-in-hand.

Regional-scale studies do provide insights into general
trends in space and time domain over the entire country
and are important for designing a national-level policy to
stop the progress of deforestation and degradation but they
do tend to overlook the changes at a local level, which will
require the usage of high-resolution satellite imagery. The
choice of usage of satellite imagery depends on the
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objective of the study. For instance,WWF Indonesia Tesso
Nilo Programme (2004) (Kusumaningtyas et al. 2009)
used ASTER satellite image procured on 24 July 2003
covering a part of Tesso Nilo National Park, Riau Prov-
ince, Sumatra Island to monitor the illegal logging prac-
tices in the area. In conjunction with the satellite data, they
collected other information like GPS location of each
logging operation and time when trucks with illegal logs
left the site of investigation and likewise. The study could
find out the company involved in illegal logging on the
site. Such studies at the local level surely help to monitor
the activities of private companies and thereby a strong
monitoring system will help to stop deforestation and
forest degradation but the use of satellite working in the
optical range is constrained by the unfavorable weather
conditions. In such a case, microwave RS is a more
preferred option. The data is available in around the year
with its penetration capability to clouds thus, providing
data even in rainy and cloudy conditions. Shimada et al.
(2014) generated four global forest/non-forest mosaics of
Advanced Land Observing Satellite (ALOS) Phased
Arrayed L-band Synthetic Aperture Radar (PALSAR).
Themaps provided a new global resource for documenting
the changing extent of forests and offer opportunities for
quantifying historical and future dynamics through com-
parison with historical (1992–1998) Japanese Earth Re-
sources Satellite (JERS-1) SAR.

Green plants uptake carbon from the atmosphere via the
process of photosynthesis. The removal of carbon from the
atmosphere, referred to as carbon sequestration is a func-
tion of the terrestrial ecosystem, for instance, the authors
(Jaramillo et al., 2003) found that forest ecosystems se-
quester more carbon per unit area than any other land type.
Another factor playing a vital role in carbon sequestration
is the quantity of biomass (Brown et al., 1999). Therefore,
it is important for each country to assess above-ground
biomass accurately, which has a prime role in quantifying
carbon stored in the forest. From the usage of destructive
techniques to highly accurate non-destructive techniques,
the world has witnessed tremendous growth of technology
in the way of quantifying AGB. The forest biomass has
been estimated using PolInSAR coherence-based regres-
sion analysis of using RADARSAT-2 datasets covering
Barkot Reserve Forest, Doon Valley, India (Singh et al.
2014).

Achievement of targets under Sustainable Develop-
ment Goal 15 which basically focuses on sustainable
management of all types of forest will require each
nation to establish a transparent, consistent, and

accurate forest monitoring system. The implication of
the present human activities along with the policies
developed and practiced are the factors, which will
certainly shape the future of the forest ecosystem.
Thus, it is critically important to forecast future
scenarios. One key component of these systems lies in
satellite RS approaches and techniques to determine
baseline data on forest loss against which future rates
of change can be evaluated. Advances in approaches
meeting these criteria for measuring, reporting, and
verification purposes are therefore of tremendous
interest. Thapa et al. (2015) carried out research to
generate future above-ground forest carbon stock in
Riau Province, Indonesia. The study utilized ALOS
PALSAR-2 Mosaic data at a 25-m spatial resolution to
generate a baseline and generated future scenarios in
correspondence to the IPCC Assessment Report (AR 5).
The three policy scenarios were analyzed: BAU, corre-
sponding to the “business as usual policy,” G-FC indi-
cating the “government-forest conservation policy,” and
G-CPL, representing the “government-concession for
plantations and logging policy.” It was found that if
the currently practiced policies are continued, then the
place will lose the forest cover and thereby impact
carbon sequestration. Such studies play a paramount
role in designing and analyzing the current policies
and their implications on the future. Thus, it is evident
that the use of an objective specific geospatial technique
is essentially important for the implementation and
achievement of SDG 15.

Discussion

The progress being made in achieving SDGs can be
measured by several quantifiable indicators. The role of
RS techniques in the measurement to monitor the
roadmaps for achieving SDGs has been significant in
terms of its capacity to use sensor data in order to augment
the census data. Several studies, which use one kind of RS
technique or others, have shown that RS methods play a
major role in the monitoring of SDGs. Citizens, science,
and big data have also been found useful for measuring
and monitoring SDG indicators. The data generated by
citizens is data that people or their organizations produce to
directly monitor, demand, or drive changes on issues that
affect them. It is generated by using surveys, messages,
phone calls, emails, reports, social media, etc. The pro-
duced data can be quantitative or qualitative in various
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formats (DataShift 2017). The lessons learned from the
Millennium Development Goals (MDGs) showed that the
engagement of citizens and civil societies can play a critical
role for an inclusive, transparent, and participatory SDGs
accountability framework (Romano 2015). Public partici-
pation at all levels should be prioritized as per Post-2015
agenda to ensure inclusive development. It can help to
bring the most marginalized voices to the table with the
rights to freedom of expression, association, peaceful as-
sembly, and access to information (Romano 2015).
Citizen-driven data could play a major role in monitoring
and driving progress of SDG implementation in real-time.
Citizen-driven data has a high potential to fill the existing
gaps by providing real-time, prioritized, or precise data. It
can ensure transformational changes that are required to
tackle the huge global challenges to implement SDGs
(DataShift 2017). Citizen science can contribute to the
implementation of SDGs in various ways such as addi-
tional data and capacity, fulfilling commitments to multi-
stakeholder partnerships, driving innovation and capacity
building, broad ownership and accuracy of data,
strengthening accountability, shadow monitoring, etc.
The authors in Cronforth Jack (2015) said “SDGmonitor-
ing should be rigorous, based on evidence, time, reliability
and disaggregation by different groups in society. All
citizens generated data can make a crucial contribution to
make a reality.” Some of the examples for the above points
can be already seen affecting our everyday life in the form
of Google Maps or Google Earth, data addition, and
analysis with geotagging and image uploads by individuals
all over the world. Not only do others have the practical
aspect of the situation; they also keep the system updated.
With the massive interest of highly complex data available
from satellites all over the world and presented in a simple
form and easily understandable format of Google Earth,
people are encouraged to make astonishing discoveries,
e.g., largest rain forest in Southern Africa or identification
of unusual cave systems that lead to the discovery of a
NewHumanAncestor (Nobre et al. 2010). These are a few
examples of citizen data, as well as making a contribution
to the betterment of the system and increasing scientific
curiosity&making discoveries (Santens 2011). A study by
Global Pulse on mining citizen feedback data for enhanc-
ing local government decision making in 2015 demon-
strated the potential utility of near real-time information on
public policy issues and their corresponding locations
within defined constituencies, enhanced data analysis for
prioritization and rapid response, and deriving insights on
different aspects of citizen feedback (UN Global Pulse

2015). Forest Watchers “proposes a new paradigm in
conservationism based on the convergence of volunteer
computing with free or donated catalogs of high-resolution
Earth imagery” (Gonzalez, 2012). It involves volunteer
citizens and scientists from around the globe, who help
monitor levels of deforestation. By reviewing satellite
images of forested regions, local residents, volunteers,
non-governmental organizations, and governments can
help in the assessment of these regions. Moreover, this
initiative encourages local citizens and provides the rights
of ownership to help in implementing SDGs. Flückiger &
Seth (2016) suggested that data from civil society can be
crowdsourced to implement and monitor the progress of
SDGs. United Nations Environmental Program (UNEP) is
involved in capacity development, environmental aware-
ness, and information exchange programs to foster a gen-
eration of environmentally conscious citizens that can help
ecosystem renewal in Kenya (UNEP 2017). The use of
citizen, science, and data/information can provide transpar-
ency in a system with updated and real-time information
that can change the course of our future with a political
will. A positive example for such political and citizen,
science and data movements is the accessibility to free
satellite data such as Landsat, Sentinel, MODIS for scien-
tific purposes. It has led to a tremendous increase in
research studies and monitoring of areas ranging from
busiest metropolitans to the most remote location on the
plant ushering a new era of scientific research backed by
satellite data analysis.

Over the last decade, big data has become an interesting
field of research with an increase in attention attracting the
interest of academia, industries, governments, and other
organizations. The authors in Kitchin (2014) have sug-
gested it to be a predominant source of innovation, com-
petition, and productivity. The recent development in com-
puter science with the high-performance computer, storage
capacity, and the growth of high-resolution satellite data is
dramatically increasing by several terabytes per day. Sci-
entists are considering RS data as “Big Data” because of
the continuation in controlling global earth observation for
environmental monitoring Skyland (2012). The RS big
data do not merely refer to the volume and velocity of data
but also to the variety and complexity of data. This diver-
sity and complexity in datamake the access and processing
significantly difficult especially for the layman (Ma et al.
2014). Annexure 1 shows various satellites and their spec-
ifications. These satellites have sensors with different spa-
tial, temporal, and spectral resolution resulting in multi-
sensor complex data. The use of a multi-sensor approach
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can overcome the limitations of one sensor with the use of
other sensor data from local to global scale (Ma et al.
2014). The opportunity of big data for SDGs lies in
leveraging new/non-traditional data sources and tech-
niques to better measure or monitor progress for the
achievement of the SDGs. Moreover, with the interest in
big data in the global SDG discourse, attempts have been
made to identify ongoing regional and country-specific
activities. It is important to understand the applicability of
big data in relation to the SDGs by identifying how big
data can help to implement and monitor potential targets.
The use of urban big data for advancing more innovative
targets and indicators relevant to the SDGs has been stud-
ied byKharrazi et al. (2016). The SDG for any government
can be challenging to understand and evenmore difficult to
put a system in place for the achievement of such goals.
The initiation of government interest for Big data mining
can be on various fronts and for a variety of purposes. The
first step for any government is to make the life of the
citizen of that country/region better than before and ensure
sufficient resources for the future generation. For example,
the benefits of big data mining done by governments
intended for the improvement for citizen services can
potentially be the determination of eligibility of beneficia-
ries, using advanced analytical tools, to plan and track
welfare schemes to ensure that benefits reach only eligible
citizens, identify deceased, invalid, and duplicate persons
to eliminate duplicate benefit payments. While these ben-
efits are just a few to start with, it is just an example of the
broad spectrum of impacts in all aspects of any nation.
Further, to achieve these development targets in a sustained
manner, converged governance efforts are required at the
grassroots, which in turn would inevitably result in the
generation of continuous baseline data. The use of struc-
tured baseline data and unstructured citizens’ data can be
combined and analyzed by the application of big data
analytics and emerging Information and Communication
Technologies (ICTs). There is a need to raise awareness of
the potential of big data for public purposes and invest in
institutional capacity building as well as data-driven regu-
lation and policy-making (Development 2017). The use of
big data analysis in medicine and healthcare practices is on
the rise, and we are already seeing legal proposals such as
the draft ElectronicDataRecords standards in order to both
enable and govern the collection of medical data. The
pooling of medical data for identification, diagnosis, and
treatment of a wide range of health problems is one such
example of everyone benefiting from data pooling. The
study by Lu et al. (2015) suggested five priorities for the

SDGs viz. devise metrics, establish monitoring mecha-
nisms, evaluate progress, enhance infrastructure,
standardize, and verify data. The authors Maurice (2016)
measure the progress of SDGs by using data from the 2015
edition of the global burden of diseases, injuries, and risk
factor study. The authors of Jotzo (2013) discuss that big
data should be selected in such a way that it can be used to
test different aspects for sustainable production of energy,
food security, water security, and eliminating poverty.

Concluding remarks

The 17 SDGs have been set for improvement of human
well-being, protecting natural resources, andmitigating the
impact of human activities on the planet for future gener-
ations. Unlike the previousMDGs, the SDGs aremeant for
both developed and developing countries. Considering the
broad themes and areas of the SDGs, monitoring is crucial
for their successful accomplishment by 2030, as well as to
revise the existing policies for better functioning and pre-
cise targeting. Geospatial data can visualize regional dif-
ferences. Hence, it is useful to detect social and economic
inequalities at both national and local levels. Many studies
have revealed that geospatial data is an effective tool to
monitor the SDGs’ achievement and progress to make
effective future plans. However, it is not fully applied in
the monitoring and evaluation of global problems and
targets. For the success of SDGs, the monitoring process
should be standardized for all countries with the coopera-
tion of the scientific and political communities. Consider-
ing the broad range of SDGs’ targets, geospatial informa-
tion is one of the most important tools for monitoring their
achievement. It will also pave the way for the successful
accomplishment of SDGs. Based on this observation, it is
still necessary to develop geospatial techniques for the
implementation and monitoring of SDGs 5, 8, 10, and 17
where very limited research has been done.

Achieving the SDGs undoubtedly demands massive
global concerted efforts to efficiently make use of data
sharing, processing, and aggregation in a highly multidis-
ciplinary framework. National geospatial information
agencies will need to collaborate closely with national
statistical and earth observation professional communities
to deliver consistent and reliable data to fit into the formu-
lation of wide-ranging sustainable development policies.
This review paper also discussed the role of citizen science
and big data for the success of SDGs’ implementation.
Participation and transparency are the key components for
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a robust, effective, and accountable mechanism for SDGs
from local to a global scale. By the potential use of Google
Earth Engine, it is evident that many future opportunities
exist for the real-time processing of satellite data. The
integrative approach of partnership, capacity-building,
and big data can result in sustainable solutions for SDGs’
implementation.
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Appendix

Table 1 Satellite sensors and their characteristics

S.
no.

Sensors Spatial
resolution (m)

No. of spectral
bands

Radiometric
resolution (bit)

Band range
(μm)

Swath width
(km)

Revisit cycle
(days)

A. Coarse resolution sensors

1 AVHRR 1000 4 11 0.58–11.65 2900 Daily

2 MODIS 250, 500,1000 36 12 0.62–2.16 2330 Daily

B. Multi-spectral sensors

3 Landsat-1, 2, 3 MSS 56X79 4 6 0.5–1.1 185 16

4 Landsat-4, 5
TM

30 7 8 0.45–2.35 185 16

5 Landsat-7
ETM+

30 8 8 0.45–1.55 185 16

6 Landsat-8 30 11 16 0.43–2.29 185 16

7 ASTER 15, 30, 90 15 8 0.52–2.43 60 16

8 ALI 30 10 12 0.433–2.35 37 16

9 SPOT-1, 2, 3, 4,
5

2. 5–20 15 16 0.50–1.75 60 3–5

10 IRS 1C, 1D 23.4 (SWIR 70.5) 4 7 0.52–1.7 141/140 24

11 IRS 1C, IRS
1D

188 2 7 0.62–0.86 810 24

12 IRS 1C, IRS1D 5.8 1 6 0.50–0.75 70 24

13 IRS P6 5.8 3 10 0.52–0.86 70/23 (mono) 24

14 IRS P6 56 4 10 and 12 0.52–1.7 737/740 24

15 Cartosat-1
(PAN)

2.5 1 10 0.5–0.85 30 5

16 Cartosat-2
(PAN)

0.8 1 10 0.5–0.85 9.6 5

17 CBERS-2 20 m pan, 11 0.51–0.89 113 26

18 Sentinel-2 10, 20, 60 13 12 0.44–2.2 290 5

19 Sentinel-3 Full resolution
300 m

21 12 0.44–1.02 ~ 1270 27

C. Hyper-spectral sensor

1 Hyperion 30 196 16 0.427–0.925 7.5 16

D. Hyper-spatial sensor

1 SPOT-6 1.5 (PAN) 4 12 0.455–0.89 60 Daily

2 RAPID EYE 6.5 5 12 0.44–0.89 77 1–2

4 WORLDVIEW 0.55 1 11 0.45–0.51 17.7 1.7–5.9

5 FORMOSAT-2 2–8 5 12 0.45–0.90 24 Daily
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