

Recent land cover change in the Silang-Sta. Rosa sub-watershed of the Philippines, and implications for flood risk

Brian A. Johnson^a, Isao Endo^a, Damasa B. Magcale-Macandog^b, Milben Bragais^b, Paula Beatrice M. Macandog^b ^aInstitute for Global Environmental Strategies, Japan; ^bUniversity of the Philippines Los Baños, Philippines

Overview

- Landsat satellite images¹ analyzed using remote sensing techniques to map the extent of impervious and vegetated land in 2000 and 2014. Land cover change calculated to assess implications for flooding.
- Results shared with local government units to stress the need for climate-resilient land use planning.

 Impervious area of sub-watershed increased by 54%

(from 3,239 ha. to 4,988 ha.).

- Vegetated area decreased by 21% (from 8,509 ha. to 6,760 ha).
- Upstream: Impervious area increased by 102% in upstream municipality of Silang, and also increased in upstream parts of Biñan and Santa Rosa City, causing higher runoff (more frequent and intense floods downstream).
- **Downstream:** The most flood-prone areas in the watershed underwent some of the most development.

¹Landsat satellite data courtesy of the United States Geological Survey (USGS). Spatial resolution (i.e. pixel size) of the images are 30m x 30m. ²Flood hazard data courtesy of the Philippine National Mapping and Resource Information Authority (NAMRIA).

Acknowledgment: This paper is generally based upon outputs of a project on integrating climate change mitigation and adaptation, under the "Climate Change Resilient Low Carbon Society Network (CCR-LCSNet)", commissioned work of the Japanese Ministry of the Environment.